Lipid tail protrusions mediate the insertion of nanoparticles into model cell membranes

Recent work has demonstrated that charged ​gold nanoparticles (AuNPs) protected by an amphiphilic organic monolayer can spontaneously insert into the core of lipid bilayers to minimize the exposure of hydrophobic surface area to water. However, the kinetic pathway to reach the thermodynamically stab...

Full description

Bibliographic Details
Main Authors: Van Lehn, Reid C. (Contributor), Ricci, Maria (Author), Silva, Paulo H.J (Author), Andreozzi, Patrizia (Author), Reguera, Javier (Author), Voïtchovsky, Kislon (Author), Stellacci, Francesco (Author), Alexander-Katz, Alfredo (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Materials Science and Engineering (Contributor)
Format: Article
Language:English
Published: Nature Publishing Group, 2016-06-07T15:20:14Z.
Subjects:
Online Access:Get fulltext
LEADER 02564 am a22003373u 4500
001 103036
042 |a dc 
100 1 0 |a Van Lehn, Reid C.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Materials Science and Engineering  |e contributor 
100 1 0 |a Van Lehn, Reid C.  |e contributor 
100 1 0 |a Alexander-Katz, Alfredo  |e contributor 
700 1 0 |a Ricci, Maria  |e author 
700 1 0 |a Silva, Paulo H.J.  |e author 
700 1 0 |a Andreozzi, Patrizia  |e author 
700 1 0 |a Reguera, Javier  |e author 
700 1 0 |a Voïtchovsky, Kislon  |e author 
700 1 0 |a Stellacci, Francesco  |e author 
700 1 0 |a Alexander-Katz, Alfredo  |e author 
245 0 0 |a Lipid tail protrusions mediate the insertion of nanoparticles into model cell membranes 
260 |b Nature Publishing Group,   |c 2016-06-07T15:20:14Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/103036 
520 |a Recent work has demonstrated that charged ​gold nanoparticles (AuNPs) protected by an amphiphilic organic monolayer can spontaneously insert into the core of lipid bilayers to minimize the exposure of hydrophobic surface area to water. However, the kinetic pathway to reach the thermodynamically stable transmembrane configuration is unknown. Here, we use unbiased atomistic simulations to show the pathway by which AuNPs spontaneously insert into bilayers and confirm the results experimentally on supported lipid bilayers. The critical step during this process is hydrophobic-hydrophobic contact between the core of the bilayer and the monolayer of the AuNP that requires the stochastic protrusion of an aliphatic lipid tail into solution. This last phenomenon is enhanced in the presence of high bilayer curvature and closely resembles the putative pre-stalk transition state for vesicle fusion. To the best of our knowledge, this work provides the first demonstration of vesicle fusion-like behaviour in an amphiphilic nanoparticle system. 
520 |a National Science Foundation (U.S.) (Graduate Research Fellowship) 
520 |a National Science Foundation (U.S.) (Materials Research Science and Engineering Centers (MRSEC) Program award number DMR-0819762) 
520 |a Swiss National Science Foundation (NRP 64 programme) 
520 |a Swiss National Science Foundation (Ambizione Fellowship) 
520 |a Seventh Framework Programme (European Commission) (FP7/2007-2013 under grant agreement 602923)) 
520 |a National Science Foundation (U.S.) (grant number OCI-1053575) 
546 |a en_US 
655 7 |a Article 
773 |t Nature Communications