Interacting Dirac fermions under a spatially alternating pseudomagnetic field: Realization of spontaneous quantum Hall effect

Both topological crystalline insulator surfaces and graphene host multivalley massless Dirac fermions which are not pinned to a high-symmetry point of the Brillouin zone. Strain couples to the low-energy electrons as a time-reversal-invariant gauge field, leading to the formation of pseudo-Landau-le...

Full description

Bibliographic Details
Main Authors: Fu, Liang (Contributor), Venderbos, Joern Willem Friedrich (Author)
Other Authors: Massachusetts Institute of Technology. Materials Processing Center (Contributor), Massachusetts Institute of Technology. Department of Physics (Contributor), Venderbos, Jorn W. F. (Contributor)
Format: Article
Language:English
Published: American Physical Society, 2016-05-24T14:44:24Z.
Subjects:
Online Access:Get fulltext
LEADER 01760 am a22002293u 4500
001 102656
042 |a dc 
100 1 0 |a Fu, Liang  |e author 
100 1 0 |a Massachusetts Institute of Technology. Materials Processing Center  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Physics  |e contributor 
100 1 0 |a Venderbos, Jorn W. F.  |e contributor 
100 1 0 |a Fu, Liang  |e contributor 
700 1 0 |a Venderbos, Joern Willem Friedrich  |e author 
245 0 0 |a Interacting Dirac fermions under a spatially alternating pseudomagnetic field: Realization of spontaneous quantum Hall effect 
260 |b American Physical Society,   |c 2016-05-24T14:44:24Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/102656 
520 |a Both topological crystalline insulator surfaces and graphene host multivalley massless Dirac fermions which are not pinned to a high-symmetry point of the Brillouin zone. Strain couples to the low-energy electrons as a time-reversal-invariant gauge field, leading to the formation of pseudo-Landau-levels (PLLs). Here we study periodic pseudomagnetic fields originating from strain superlattices. We study the low-energy Dirac PLL spectrum induced by the strain superlattice and analyze the effect of various polarized states. Through self-consistent Hartree-Fock calculations we establish that, due to the strain superlattice and PLL electronic structure, a valley-ordered state spontaneously breaking time reversal and realizing a quantum Hall phase is favored, while others are suppressed. Our analysis applies to both topological crystalline insulators and graphene. 
520 |a NWO of the Netherlands 
520 |a David & Lucile Packard Foundation 
546 |a en 
655 7 |a Article 
773 |t Physical Review B