Statistical dynamics of continuous systems: perturbative and approximative approaches

We discuss general concept of Markov statistical dynamics in the continuum. For a class of spatial birth-and-death models, we develop a perturbative technique for the construction of statistical dynamics. Particular examples of such systems are considered. For the case of Glauber type dynamics in th...

Full description

Bibliographic Details
Main Authors: Finkelshtein, Dmitri (Author), Kondratiev, Yuri (Author), Kutovyi, Oleksandr (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Mathematics (Contributor)
Format: Article
Language:English
Published: Springer-Verlag, 2016-03-28T19:05:11Z.
Subjects:
Online Access:Get fulltext
LEADER 01111 am a22001933u 4500
001 101898
042 |a dc 
100 1 0 |a Finkelshtein, Dmitri  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
100 1 0 |a Kutovyi, Oleksandr  |e contributor 
700 1 0 |a Kondratiev, Yuri  |e author 
700 1 0 |a Kutovyi, Oleksandr  |e author 
245 0 0 |a Statistical dynamics of continuous systems: perturbative and approximative approaches 
260 |b Springer-Verlag,   |c 2016-03-28T19:05:11Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/101898 
520 |a We discuss general concept of Markov statistical dynamics in the continuum. For a class of spatial birth-and-death models, we develop a perturbative technique for the construction of statistical dynamics. Particular examples of such systems are considered. For the case of Glauber type dynamics in the continuum we describe a Markov chain approximation approach that gives more detailed information about statistical evolution in this model. 
546 |a en_US 
655 7 |a Article 
773 |t Arabian Journal of Mathematics