Phenotypic screens for compounds that target the cellular pathologies underlying Parkinson's disease

Parkinson's disease (PD) is a devastating neurodegenerative disease that affects over one million patients in the US. Yet, no disease modifying drugs exist, only those that temporarily alleviate symptoms. Because of its poorly defined and highly complex disease etiology, it is essential to embr...

Full description

Bibliographic Details
Main Authors: Tardiff, Daniel F. (Author), Lindquist, Susan (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Biology (Contributor), Whitehead Institute for Biomedical Research (Contributor)
Format: Article
Language:English
Published: Elsevier, 2016-02-25T14:18:16Z.
Subjects:
Online Access:Get fulltext
LEADER 01830 am a22001933u 4500
001 101272
042 |a dc 
100 1 0 |a Tardiff, Daniel F.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Biology  |e contributor 
100 1 0 |a Whitehead Institute for Biomedical Research  |e contributor 
100 1 0 |a Lindquist, Susan  |e contributor 
700 1 0 |a Lindquist, Susan  |e author 
245 0 0 |a Phenotypic screens for compounds that target the cellular pathologies underlying Parkinson's disease 
260 |b Elsevier,   |c 2016-02-25T14:18:16Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/101272 
520 |a Parkinson's disease (PD) is a devastating neurodegenerative disease that affects over one million patients in the US. Yet, no disease modifying drugs exist, only those that temporarily alleviate symptoms. Because of its poorly defined and highly complex disease etiology, it is essential to embrace unbiased and innovative approaches for identifying new chemical entities that target the underlying toxicities associated with PD. Traditional target-based drug discovery paradigm can suffer from a bias toward a small number of potential targets. Phenotypic screening of both genetic and pharmacological PD models offers an alternative approach to discover compounds that target the initiating causes and effectors of cellular toxicity. The relative paucity of reported phenotypic screens illustrates the intrinsic difficulty in establishing model systems that are both biologically meaningful and adaptable to high-throughput screening. Parallel advances in PD models and in vivo screening technologies will help create opportunities for identifying new therapeutic leads with unanticipated, breakthrough mechanisms of action. 
546 |a en_US 
655 7 |a Article 
773 |t Drug Discovery Today: Technologies