Localization from Superselection Rules in Translationally Invariant Systems

The cubic code model is studied in the presence of arbitrary extensive perturbations. Below a critical perturbation strength, we show that most states with finite energy are localized; the overwhelming majority of such states have energy concentrated around a finite number of defects, and remain so...

Full description

Bibliographic Details
Main Authors: Kim, Isaac H. (Author), Haah, Jeongwan (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Physics (Contributor)
Format: Article
Language:English
Published: American Physical Society, 2016-01-25T14:04:46Z.
Subjects:
Online Access:Get fulltext
Description
Summary:The cubic code model is studied in the presence of arbitrary extensive perturbations. Below a critical perturbation strength, we show that most states with finite energy are localized; the overwhelming majority of such states have energy concentrated around a finite number of defects, and remain so for a time that is near exponential in the distance between the defects. This phenomenon is due to an emergent superselection rule and does not require any disorder. Local integrals of motion for these finite energy sectors are identified as well. Our analysis extends more generally to systems with immobile topological excitations.
MIT Department of Physics Pappalardo Program (Fellowship)