Pie-like electrode design for high-energy density lithium-sulfur batteries

Owing to the overwhelming advantage in energy density, lithium-sulfur (Li-S) battery is a promising next-generation electrochemical energy storage system. Despite many efforts in pursuing long cycle life, relatively little emphasis has been placed on increasing the areal energy density. Herein, we h...

Full description

Bibliographic Details
Main Authors: Li, Zhen (Author), Zhang, Jin Tao (Author), Chen, Yu Ming (Author), Li, Ju (Contributor), Lou, Xiong Wen (David) (Author)
Other Authors: Massachusetts Institute of Technology. Department of Materials Science and Engineering (Contributor), Massachusetts Institute of Technology. Department of Nuclear Science and Engineering (Contributor)
Format: Article
Language:English
Published: Nature Publishing Group, 2016-01-18T21:57:33Z.
Subjects:
Online Access:Get fulltext
LEADER 02020 am a22002533u 4500
001 100899
042 |a dc 
100 1 0 |a Li, Zhen  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Materials Science and Engineering  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Nuclear Science and Engineering  |e contributor 
100 1 0 |a Li, Ju  |e contributor 
700 1 0 |a Zhang, Jin Tao  |e author 
700 1 0 |a Chen, Yu Ming  |e author 
700 1 0 |a Li, Ju  |e author 
700 1 0 |a Lou, Xiong Wen   |q  (David)   |e author 
245 0 0 |a Pie-like electrode design for high-energy density lithium-sulfur batteries 
260 |b Nature Publishing Group,   |c 2016-01-18T21:57:33Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/100899 
520 |a Owing to the overwhelming advantage in energy density, lithium-sulfur (Li-S) battery is a promising next-generation electrochemical energy storage system. Despite many efforts in pursuing long cycle life, relatively little emphasis has been placed on increasing the areal energy density. Herein, we have designed and developed a 'pie' structured electrode, which provides an excellent balance between gravimetric and areal energy densities. Combining lotus root-like multichannel carbon nanofibers 'filling' and amino-functionalized graphene 'crust', the free-standing paper electrode (S mass loading: 3.6 mg cm[superscript −2]) delivers high specific capacity of 1,314 mAh g[superscript −1] (4.7 mAh cm[superscript −2]) at 0.1 C (0.6 mA cm[superscript −2]) accompanied with good cycling stability. Moreover, the areal capacity can be further boosted to more than 8 mAh cm[superscript −2] by stacking three layers of paper electrodes with S mass loading of 10.8 mg cm[superscript −2]. 
520 |a National Science Foundation (U.S.) (DMR-1120901) 
520 |a Wuxi Weifu High-technology Group Co., Ltd. 
546 |a en_US 
655 7 |a Article 
773 |t Nature Communications