Bumpy pyramid folding

We investigate folding problems for a class of petal polygons P, which have an n-polygonal base B surrounded by a sequence of triangles. We give linear time algorithms using constant precision to determine if P can fold to a pyramid with flat base B, and to determine a triangulation of B (crease pat...

Full description

Bibliographic Details
Main Authors: Abel, Zachary Ryan (Contributor), Demaine, Erik D. (Contributor), Demaine, Martin L. (Contributor), Ito, Hiro (Author), Snoeyink, Jack (Author), Uehara, Ryuhei (Author)
Other Authors: Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory (Contributor), Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Contributor), Massachusetts Institute of Technology. Department of Mathematics (Contributor)
Format: Article
Language:English
Published: 2015-12-17T01:55:59Z.
Subjects:
Online Access:Get fulltext
LEADER 01838 am a22002773u 4500
001 100406
042 |a dc 
100 1 0 |a Abel, Zachary Ryan  |e author 
100 1 0 |a Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
100 1 0 |a Abel, Zachary Ryan  |e contributor 
100 1 0 |a Demaine, Erik D.  |e contributor 
100 1 0 |a Demaine, Martin L.  |e contributor 
700 1 0 |a Demaine, Erik D.  |e author 
700 1 0 |a Demaine, Martin L.  |e author 
700 1 0 |a Ito, Hiro  |e author 
700 1 0 |a Snoeyink, Jack  |e author 
700 1 0 |a Uehara, Ryuhei  |e author 
245 0 0 |a Bumpy pyramid folding 
260 |c 2015-12-17T01:55:59Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/100406 
520 |a We investigate folding problems for a class of petal polygons P, which have an n-polygonal base B surrounded by a sequence of triangles. We give linear time algorithms using constant precision to determine if P can fold to a pyramid with flat base B, and to determine a triangulation of B (crease pattern) that allows folding into a convex (triangulated) polyhedron. By Alexandrov's theorem, the crease pattern is unique if it exists, but the general algorithm known for this theorem is pseudo-polynomial, with very large running time; ours is the first efficient algorithm for Alexandrov's theorem for a special class of polyhedra. We also give a polynomial time algorithm that finds the crease pattern to produce the maximum volume triangulated polyhedron. 
546 |a en_US 
655 7 |a Article 
773 |t Proceedings of the 26th Canadian Conference on Computational Geometry