Gaussian Process Interpolation for Uncertainty Estimation in Image Registration

Intensity-based image registration requires resampling images on a common grid to evaluate the similarity function. The uncertainty of interpolation varies across the image, depending on the location of resampled points relative to the base grid. We propose to perform Bayesian inference with Gaussia...

Full description

Bibliographic Details
Main Authors: Wachinger, Christian (Contributor), Golland, Polina (Contributor), Reuter, Martin (Contributor), Wells, William M. (Contributor)
Other Authors: Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory (Contributor), Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Contributor)
Format: Article
Language:English
Published: Springer-Verlag, 2015-12-15T15:23:57Z.
Subjects:
Online Access:Get fulltext
LEADER 02192 am a22003013u 4500
001 100261
042 |a dc 
100 1 0 |a Wachinger, Christian  |e author 
100 1 0 |a Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science  |e contributor 
100 1 0 |a Wachinger, Christian  |e contributor 
100 1 0 |a Golland, Polina  |e contributor 
100 1 0 |a Reuter, Martin  |e contributor 
100 1 0 |a Wells, William M.  |e contributor 
700 1 0 |a Golland, Polina  |e author 
700 1 0 |a Reuter, Martin  |e author 
700 1 0 |a Wells, William M.  |e author 
245 0 0 |a Gaussian Process Interpolation for Uncertainty Estimation in Image Registration 
260 |b Springer-Verlag,   |c 2015-12-15T15:23:57Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/100261 
520 |a Intensity-based image registration requires resampling images on a common grid to evaluate the similarity function. The uncertainty of interpolation varies across the image, depending on the location of resampled points relative to the base grid. We propose to perform Bayesian inference with Gaussian processes, where the covariance matrix of the Gaussian process posterior distribution estimates the uncertainty in interpolation. The Gaussian process replaces a single image with a distribution over images that we integrate into a generative model for registration. Marginalization over resampled images leads to a new similarity measure that includes the uncertainty of the interpolation. We demonstrate that our approach increases the registration accuracy and propose an efficient approximation scheme that enables seamless integration with existing registration methods. 
520 |a Alexander von Humboldt-Stiftung 
520 |a National Alliance for Medical Image Computing (U.S.) (U54-EB005149) 
520 |a Neuroimaging Analysis Center (U.S.) (P41-EB015902) 
520 |a National Center for Image-Guided Therapy (U.S.) (P41-EB015898) 
546 |a en_US 
655 7 |a Article 
773 |t Medical Image Computing and Computer-Assisted Intervention - MICCAI 2014