Unsteady free convection flow of nanofluid with dissipation effect over a non-isothermal vertical cone

This paper investigated unsteady free convection flow of nanofluid with dissipation effect over a non-isothermal vertical cone. The dimensional governing equations that consists of continuity, energy and momentum equations are reduced by using appropriate dimensionless variables along with variable...

Full description

Bibliographic Details
Main Authors: Hanafi, Hajar (Author), Shafie, Sharidan (Author), Ullah, Imran (Author)
Format: Article
Language:English
Published: Penerbit Akademia Baru, 2020-09.
Subjects:
Online Access:Get fulltext
LEADER 02022 am a22001573u 4500
001 28793
042 |a dc 
100 1 0 |a Hanafi, Hajar  |e author 
700 1 0 |a Shafie, Sharidan  |e author 
700 1 0 |a Ullah, Imran  |e author 
245 0 0 |a Unsteady free convection flow of nanofluid with dissipation effect over a non-isothermal vertical cone 
260 |b Penerbit Akademia Baru,   |c 2020-09. 
856 |z Get fulltext  |u http://eprints.utm.my/id/eprint/28793/1/HajarHanafi2020_UnsteadyFreeConvectionFlowofNanofluid.pdf 
520 |a This paper investigated unsteady free convection flow of nanofluid with dissipation effect over a non-isothermal vertical cone. The dimensional governing equations that consists of continuity, energy and momentum equations are reduced by using appropriate dimensionless variables along with variable wall temperature as its initial and boundary conditions. The case when water is the base fluid has been considered and the effects of the solid volume fraction on the flow and heat transfer characteristics are determined for Silver (Ag), Copper (Cu), Alumina (Al2O3) and Titanium oxide (TiO2) nanofluids. The purpose of the study is to investigate numerically the mathematical model by using the Crank-Nicolson method. The discretization equations were computed, and numerical results were plotted using MATLAB software. It has been shown that when the nanoparticles volume fraction increases, the NuX increases and the velocity profile decreases.Moreover, for Silver (Ag), Copper (Cu) and Titanium oxide (TiO2) nanoparticles, the thermal boundary layer decreases at first but later started to increase at certain values as the nanoparticles volume fraction increases. However, for Alumina (Al2O3) nanoparticles, the temperature profile increases as the nanoparticles volume fraction increases. It has also been found in this problem that the Alumina (Al2O3) nanoparticles have the highest heating performance while Silver (Ag) nanoparticles have the highest coolingperformance. 
546 |a en 
650 0 4 |a QA Mathematics