On the second Hankel determinant of some analytic functions

Let the function f be analytic in zD  z : z 1 and be given by   2 n . n n f z z az      For 0   1, denote by V   and U  , the sets of functions analytic in D, satisfying         '' Re 1 ' 1 0 ' zf z f z f z                   and...

Full description

Bibliographic Details
Main Authors: Thomas, D. K. (Author), Verma, Sarika (Author)
Format: Article
Language:English
Published: Penerbit Universiti Kebangsaan Malaysia, 2015-12.
Online Access:Get fulltext
LEADER 01074 am a22001333u 4500
001 9732
042 |a dc 
100 1 0 |a Thomas, D. K.  |e author 
700 1 0 |a Verma, Sarika  |e author 
245 0 0 |a On the second Hankel determinant of some analytic functions 
260 |b Penerbit Universiti Kebangsaan Malaysia,   |c 2015-12. 
856 |z Get fulltext  |u http://journalarticle.ukm.my/9732/1/jqma-11-2-paper2.pdf 
520 |a Let the function f be analytic in zD  z : z 1 and be given by   2 n . n n f z z az      For 0   1, denote by V   and U  , the sets of functions analytic in D, satisfying         '' Re 1 ' 1 0 ' zf z f z f z                   and         ' Re 1 0 f z zf z z fz            respectively, so that f V   zf 'U  . We give sharp bounds for the Hankel determinant 2 2 2 4 3 H  a a  a for f V   and f U  . 
546 |a en