Evolutionary Computation for Dynamic Parameter Optimisation of Evolving Connectionist Systems for On-line Prediction of Time Series with Changing Dynamics
The paper describes a method of using evolutionary computation technique for parameter optimisation of evolving connectionist systems (ECOS) that operate in an online, life-long learning mode. ECOS evolve their structure and functionality from an incoming stream of data in either a supervised-, or/a...
Main Authors: | , , |
---|---|
Format: | Others |
Published: |
IEEE,
2009-05-27T22:18:48Z.
|
Subjects: | |
Online Access: | Get fulltext |
Summary: | The paper describes a method of using evolutionary computation technique for parameter optimisation of evolving connectionist systems (ECOS) that operate in an online, life-long learning mode. ECOS evolve their structure and functionality from an incoming stream of data in either a supervised-, or/and in an unsupervised mode. The algorithm is illustrated on a case study of predicting a chaotic time-series that changes its dynamics over time. With the on-line parameter optimisation of ECOS, a faster adaptation and a better prediction is achieved. The method is practically applicable for real time applications. |
---|