Thermosensitive collagen/fibrinogen gels loaded with decorin suppress lesion site cavitation and promote functional recovery after spinal cord injury
Abstract The treatment of spinal cord injury (SCI) is a complex challenge in regenerative medicine, complicated by the low intrinsic capacity of CNS neurons to regenerate their axons and the heterogeneity in size, shape and extent of human injuries. For example, some contusion injuries do not compro...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2021-09-01
|
Series: | Scientific Reports |
Online Access: | https://doi.org/10.1038/s41598-021-97604-w |
id |
doaj-ffe971d83b1a4a1e90d6c986dabb95c6 |
---|---|
record_format |
Article |
spelling |
doaj-ffe971d83b1a4a1e90d6c986dabb95c62021-09-19T11:30:08ZengNature Publishing GroupScientific Reports2045-23222021-09-0111112010.1038/s41598-021-97604-wThermosensitive collagen/fibrinogen gels loaded with decorin suppress lesion site cavitation and promote functional recovery after spinal cord injuryJacob Matthews0Sarina Surey1Liam M. Grover2Ann Logan3Zubair Ahmed4Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of BirminghamNeuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of BirminghamSchool of Chemical Engineering, University of BirminghamWarwick Medical School, Biomedical Sciences, University of WarwickNeuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of BirminghamAbstract The treatment of spinal cord injury (SCI) is a complex challenge in regenerative medicine, complicated by the low intrinsic capacity of CNS neurons to regenerate their axons and the heterogeneity in size, shape and extent of human injuries. For example, some contusion injuries do not compromise the dura mater and in such cases implantation of preformed scaffolds or drug delivery systems may cause further damage. Injectable in situ thermosensitive scaffolds are therefore a less invasive alternative. In this study, we report the development of a novel, flowable, thermosensitive, injectable drug delivery system comprising bovine collagen (BC) and fibrinogen (FB) that forms a solid BC/FB gel (Gel) immediately upon exposure to physiological conditions and can be used to deliver reparative drugs, such as the naturally occurring anti-inflammatory, anti-scarring agent Decorin, into adult rat spinal cord lesion sites. In dorsal column lesions of adult rats treated with the Gel + Decorin, cavitation was completely suppressed and instead lesion sites became filled with injury-responsive cells and extracellular matrix materials, including collagen and laminin. Decorin increased the intrinsic potential of dorsal root ganglion neurons (DRGN) by increasing their expression of regeneration associated genes (RAGs), enhanced local axon regeneration/sprouting, as evidenced both histologically and by improved electrophysiological, locomotor and sensory function recovery. These results suggest that this drug formulated, injectable hydrogel has the potential to be further studied and translated into the clinic.https://doi.org/10.1038/s41598-021-97604-w |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Jacob Matthews Sarina Surey Liam M. Grover Ann Logan Zubair Ahmed |
spellingShingle |
Jacob Matthews Sarina Surey Liam M. Grover Ann Logan Zubair Ahmed Thermosensitive collagen/fibrinogen gels loaded with decorin suppress lesion site cavitation and promote functional recovery after spinal cord injury Scientific Reports |
author_facet |
Jacob Matthews Sarina Surey Liam M. Grover Ann Logan Zubair Ahmed |
author_sort |
Jacob Matthews |
title |
Thermosensitive collagen/fibrinogen gels loaded with decorin suppress lesion site cavitation and promote functional recovery after spinal cord injury |
title_short |
Thermosensitive collagen/fibrinogen gels loaded with decorin suppress lesion site cavitation and promote functional recovery after spinal cord injury |
title_full |
Thermosensitive collagen/fibrinogen gels loaded with decorin suppress lesion site cavitation and promote functional recovery after spinal cord injury |
title_fullStr |
Thermosensitive collagen/fibrinogen gels loaded with decorin suppress lesion site cavitation and promote functional recovery after spinal cord injury |
title_full_unstemmed |
Thermosensitive collagen/fibrinogen gels loaded with decorin suppress lesion site cavitation and promote functional recovery after spinal cord injury |
title_sort |
thermosensitive collagen/fibrinogen gels loaded with decorin suppress lesion site cavitation and promote functional recovery after spinal cord injury |
publisher |
Nature Publishing Group |
series |
Scientific Reports |
issn |
2045-2322 |
publishDate |
2021-09-01 |
description |
Abstract The treatment of spinal cord injury (SCI) is a complex challenge in regenerative medicine, complicated by the low intrinsic capacity of CNS neurons to regenerate their axons and the heterogeneity in size, shape and extent of human injuries. For example, some contusion injuries do not compromise the dura mater and in such cases implantation of preformed scaffolds or drug delivery systems may cause further damage. Injectable in situ thermosensitive scaffolds are therefore a less invasive alternative. In this study, we report the development of a novel, flowable, thermosensitive, injectable drug delivery system comprising bovine collagen (BC) and fibrinogen (FB) that forms a solid BC/FB gel (Gel) immediately upon exposure to physiological conditions and can be used to deliver reparative drugs, such as the naturally occurring anti-inflammatory, anti-scarring agent Decorin, into adult rat spinal cord lesion sites. In dorsal column lesions of adult rats treated with the Gel + Decorin, cavitation was completely suppressed and instead lesion sites became filled with injury-responsive cells and extracellular matrix materials, including collagen and laminin. Decorin increased the intrinsic potential of dorsal root ganglion neurons (DRGN) by increasing their expression of regeneration associated genes (RAGs), enhanced local axon regeneration/sprouting, as evidenced both histologically and by improved electrophysiological, locomotor and sensory function recovery. These results suggest that this drug formulated, injectable hydrogel has the potential to be further studied and translated into the clinic. |
url |
https://doi.org/10.1038/s41598-021-97604-w |
work_keys_str_mv |
AT jacobmatthews thermosensitivecollagenfibrinogengelsloadedwithdecorinsuppresslesionsitecavitationandpromotefunctionalrecoveryafterspinalcordinjury AT sarinasurey thermosensitivecollagenfibrinogengelsloadedwithdecorinsuppresslesionsitecavitationandpromotefunctionalrecoveryafterspinalcordinjury AT liammgrover thermosensitivecollagenfibrinogengelsloadedwithdecorinsuppresslesionsitecavitationandpromotefunctionalrecoveryafterspinalcordinjury AT annlogan thermosensitivecollagenfibrinogengelsloadedwithdecorinsuppresslesionsitecavitationandpromotefunctionalrecoveryafterspinalcordinjury AT zubairahmed thermosensitivecollagenfibrinogengelsloadedwithdecorinsuppresslesionsitecavitationandpromotefunctionalrecoveryafterspinalcordinjury |
_version_ |
1717375743774687232 |