A class of sets where convergence in Hausdorff sense and in measure coincide
We introduce a class of uniformly bounded closed sets such that, inside the class, convergence in Hausdorff sense and in measure do agree. We also show that the class is rich enough for applications to potential theory.
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Accademia Peloritana dei Pericolanti
2020-12-01
|
Series: | Atti della Accademia Peloritana dei Pericolanti : Classe di Scienze Fisiche, Matematiche e Naturali |
Online Access: |
http://dx.doi.org/10.1478/AAPP.98S2A9
|
id |
doaj-ffd2363c601f40ba846f36899f706648 |
---|---|
record_format |
Article |
spelling |
doaj-ffd2363c601f40ba846f36899f7066482020-12-27T11:12:10ZengAccademia Peloritana dei PericolantiAtti della Accademia Peloritana dei Pericolanti : Classe di Scienze Fisiche, Matematiche e Naturali0365-03591825-12422020-12-0198S2A910.1478/AAPP.98S2A9AAPP.98S2A9A class of sets where convergence in Hausdorff sense and in measure coincideRoberto LucchettiFernando SansòWe introduce a class of uniformly bounded closed sets such that, inside the class, convergence in Hausdorff sense and in measure do agree. We also show that the class is rich enough for applications to potential theory. http://dx.doi.org/10.1478/AAPP.98S2A9 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Roberto Lucchetti Fernando Sansò |
spellingShingle |
Roberto Lucchetti Fernando Sansò A class of sets where convergence in Hausdorff sense and in measure coincide Atti della Accademia Peloritana dei Pericolanti : Classe di Scienze Fisiche, Matematiche e Naturali |
author_facet |
Roberto Lucchetti Fernando Sansò |
author_sort |
Roberto Lucchetti |
title |
A class of sets where convergence in Hausdorff sense and in measure coincide |
title_short |
A class of sets where convergence in Hausdorff sense and in measure coincide |
title_full |
A class of sets where convergence in Hausdorff sense and in measure coincide |
title_fullStr |
A class of sets where convergence in Hausdorff sense and in measure coincide |
title_full_unstemmed |
A class of sets where convergence in Hausdorff sense and in measure coincide |
title_sort |
class of sets where convergence in hausdorff sense and in measure coincide |
publisher |
Accademia Peloritana dei Pericolanti |
series |
Atti della Accademia Peloritana dei Pericolanti : Classe di Scienze Fisiche, Matematiche e Naturali |
issn |
0365-0359 1825-1242 |
publishDate |
2020-12-01 |
description |
We introduce a class of uniformly bounded closed sets such that, inside the class, convergence in Hausdorff sense and in measure do agree. We also show that the class is rich enough for applications to potential theory. |
url |
http://dx.doi.org/10.1478/AAPP.98S2A9
|
work_keys_str_mv |
AT robertolucchetti aclassofsetswhereconvergenceinhausdorffsenseandinmeasurecoincide AT fernandosanso aclassofsetswhereconvergenceinhausdorffsenseandinmeasurecoincide AT robertolucchetti classofsetswhereconvergenceinhausdorffsenseandinmeasurecoincide AT fernandosanso classofsetswhereconvergenceinhausdorffsenseandinmeasurecoincide |
_version_ |
1724369579856101376 |