A class of sets where convergence in Hausdorff sense and in measure coincide

We introduce a class of uniformly bounded closed sets such that, inside the class, convergence in Hausdorff sense and in measure do agree. We also show that the class is rich enough for applications to potential theory.

Bibliographic Details
Main Authors: Roberto Lucchetti, Fernando Sansò
Format: Article
Language:English
Published: Accademia Peloritana dei Pericolanti 2020-12-01
Series:Atti della Accademia Peloritana dei Pericolanti : Classe di Scienze Fisiche, Matematiche e Naturali
Online Access: http://dx.doi.org/10.1478/AAPP.98S2A9
id doaj-ffd2363c601f40ba846f36899f706648
record_format Article
spelling doaj-ffd2363c601f40ba846f36899f7066482020-12-27T11:12:10ZengAccademia Peloritana dei PericolantiAtti della Accademia Peloritana dei Pericolanti : Classe di Scienze Fisiche, Matematiche e Naturali0365-03591825-12422020-12-0198S2A910.1478/AAPP.98S2A9AAPP.98S2A9A class of sets where convergence in Hausdorff sense and in measure coincideRoberto LucchettiFernando SansòWe introduce a class of uniformly bounded closed sets such that, inside the class, convergence in Hausdorff sense and in measure do agree. We also show that the class is rich enough for applications to potential theory. http://dx.doi.org/10.1478/AAPP.98S2A9
collection DOAJ
language English
format Article
sources DOAJ
author Roberto Lucchetti
Fernando Sansò
spellingShingle Roberto Lucchetti
Fernando Sansò
A class of sets where convergence in Hausdorff sense and in measure coincide
Atti della Accademia Peloritana dei Pericolanti : Classe di Scienze Fisiche, Matematiche e Naturali
author_facet Roberto Lucchetti
Fernando Sansò
author_sort Roberto Lucchetti
title A class of sets where convergence in Hausdorff sense and in measure coincide
title_short A class of sets where convergence in Hausdorff sense and in measure coincide
title_full A class of sets where convergence in Hausdorff sense and in measure coincide
title_fullStr A class of sets where convergence in Hausdorff sense and in measure coincide
title_full_unstemmed A class of sets where convergence in Hausdorff sense and in measure coincide
title_sort class of sets where convergence in hausdorff sense and in measure coincide
publisher Accademia Peloritana dei Pericolanti
series Atti della Accademia Peloritana dei Pericolanti : Classe di Scienze Fisiche, Matematiche e Naturali
issn 0365-0359
1825-1242
publishDate 2020-12-01
description We introduce a class of uniformly bounded closed sets such that, inside the class, convergence in Hausdorff sense and in measure do agree. We also show that the class is rich enough for applications to potential theory.
url http://dx.doi.org/10.1478/AAPP.98S2A9
work_keys_str_mv AT robertolucchetti aclassofsetswhereconvergenceinhausdorffsenseandinmeasurecoincide
AT fernandosanso aclassofsetswhereconvergenceinhausdorffsenseandinmeasurecoincide
AT robertolucchetti classofsetswhereconvergenceinhausdorffsenseandinmeasurecoincide
AT fernandosanso classofsetswhereconvergenceinhausdorffsenseandinmeasurecoincide
_version_ 1724369579856101376