Simulating Notch-Dome Morphology of Action Potential of Ventricular Cell: How the Speeds of Positive and Negative Feedbacks on Transmembrane Voltage Can Influence the Health of a Cell?

Ventricular action potential is well-known because of its plateau phase with a spike-notch-dome morphology. As such, the morphology of action potential is necessary for ensuring a correct heart functioning. Any distraction from normal notch-dome morphology may trigger a circus movement reentry in th...

Full description

Bibliographic Details
Main Authors: S. H. Sabzpoushan, A. Ghajarjazy
Format: Article
Language:English
Published: Hindawi Limited 2020-01-01
Series:BioMed Research International
Online Access:http://dx.doi.org/10.1155/2020/5169241
Description
Summary:Ventricular action potential is well-known because of its plateau phase with a spike-notch-dome morphology. As such, the morphology of action potential is necessary for ensuring a correct heart functioning. Any distraction from normal notch-dome morphology may trigger a circus movement reentry in the form of lethal ventricular fibrillation. When the epicardial action potential dome propagates from a site where it is maintained to regions where it has been lost, it gives rise to the proposed mechanism for the Brugada syndrome. Despite the impact of notch-dome dynamics on the heart function, no independent and explicit research has been performed on the simulation of notch-dome dynamics and morphology. In this paper, using a novel mathematical approach, a three-state variable model is proposed; we show that our proposed model not only can simulate morphology of action potential of ventricular cells but also can propose a biological reasonable tool for controlling of the morphology of action potential spike-notch-dome. We show that the processes of activation and inactivation of ionic gating variables (as positive or negative feedbacks on the voltage of cell membrane) and the ratio of their speeds (time constants) can be treated as a reasonable biological tool for simulating ventricular cell notch-dome. This finding may led to a new insight to the quantification of the health of a ventricular cell and may also propose a new drug therapy strategy for cardiac diseases.
ISSN:2314-6133
2314-6141