Modelling and Analysis Library Development for Helicopter Blade and Slender Wings

In this study, we suggest a framework for optimal design of a composite wing structure with a high aspect ratio at the initial design stage. The optimization framework calculates allowances in the first ply failure, buckling failure and bearing-bypass failure, which are frequent failure modes in the...

Full description

Bibliographic Details
Main Authors: Sang Ho AHN, Jun Hwan JANG
Format: Article
Language:English
Published: National Institute for Aerospace Research “Elie Carafoli” - INCAS 2020-09-01
Series:INCAS Bulletin
Subjects:
Online Access:https://bulletin.incas.ro/files/ahn__jang__vol_12_iss_3.pdf
Description
Summary:In this study, we suggest a framework for optimal design of a composite wing structure with a high aspect ratio at the initial design stage. The optimization framework calculates allowances in the first ply failure, buckling failure and bearing-bypass failure, which are frequent failure modes in the wing structure, using the laminate pattern database built up through past design experiences, and optimizes the weight of the wing structure within the range of the economic minimal safety margin. In order to verify the optimization framework, finite element analysis for the wing structure of an unmanned air vehicle was configured. Subsequently, static analysis and stability analysis were performed to verify robustness and reliability of the optimization framework by entering the composite material laminate data created from the optimization framework into the finite element model of the wing of an unmanned air vehicle. The optimization framework suggested in this study is an automated algorithm that can carry out sizing of various shapes composed of composite material from the concept design stage, and thus reduce the revised and repeated design time.
ISSN:2066-8201
2247-4528