Ganetespib: research and clinical development

Komal Jhaveri, Shanu Modi Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA Abstract: Under stressful conditions, the heat shock protein 90 (HSP90) molecular chaperone protects cellular proteins (client proteins) from degradation via the ubi...

Full description

Bibliographic Details
Main Authors: Jhaveri K, Modi S
Format: Article
Language:English
Published: Dove Medical Press 2015-07-01
Series:OncoTargets and Therapy
Online Access:http://www.dovepress.com/ganetespib-research-and-clinical-development-peer-reviewed-article-OTT
id doaj-ffa010915b94476eb5dcd7fafb714aa1
record_format Article
spelling doaj-ffa010915b94476eb5dcd7fafb714aa12020-11-24T22:31:27ZengDove Medical PressOncoTargets and Therapy1178-69302015-07-012015default1849185822794Ganetespib: research and clinical developmentJhaveri KModi SKomal Jhaveri, Shanu Modi Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA Abstract: Under stressful conditions, the heat shock protein 90 (HSP90) molecular chaperone protects cellular proteins (client proteins) from degradation via the ubiquitin-proteasome pathway. HSP90 expression is upregulated in cancers, and this contributes to the malignant phenotype of increased proliferation and decreased apoptosis and maintenance of metastatic potential via conservation of its client proteins, including human epidermal growth factor receptor 2, anaplastic lymphoma kinase, androgen receptor, estrogen receptor, Akt, Raf-1, cell cycle proteins, and B-cell lymphoma 2 among others. Hence, inhibition of HSP90 leads to the simultaneous degradation of its many clients, thereby disrupting multiple oncogenic signaling cascades. This has sparked tremendous interest in the development of HSP90 inhibitors as an innovative anticancer strategy. Based on the wealth of compelling data from preclinical studies, a number of HSP90 inhibitors have entered into clinical testing. However, despite enormous promise and anticancer activity reported to date, none of the HSP90 inhibitors in development has been approved for cancer therapy, and the full potential of this class of agents is yet to be realized. This article provides a review on ganetespib, a small molecule HSP90 inhibitor that is currently under evaluation in a broad range of cancer types in combination with other therapeutic agents with the hope of further enhancing its efficacy and overcoming drug resistance. Based on our current understanding of the complex HSP90 machinery combined with the emerging data from these key clinical trials, ganetespib has the potential to be the first-in-class HSP90 inhibitor to be approved as a new anticancer therapy. Keywords: HSP90, lung cancer, breast cancer, colorectal cancerhttp://www.dovepress.com/ganetespib-research-and-clinical-development-peer-reviewed-article-OTT
collection DOAJ
language English
format Article
sources DOAJ
author Jhaveri K
Modi S
spellingShingle Jhaveri K
Modi S
Ganetespib: research and clinical development
OncoTargets and Therapy
author_facet Jhaveri K
Modi S
author_sort Jhaveri K
title Ganetespib: research and clinical development
title_short Ganetespib: research and clinical development
title_full Ganetespib: research and clinical development
title_fullStr Ganetespib: research and clinical development
title_full_unstemmed Ganetespib: research and clinical development
title_sort ganetespib: research and clinical development
publisher Dove Medical Press
series OncoTargets and Therapy
issn 1178-6930
publishDate 2015-07-01
description Komal Jhaveri, Shanu Modi Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA Abstract: Under stressful conditions, the heat shock protein 90 (HSP90) molecular chaperone protects cellular proteins (client proteins) from degradation via the ubiquitin-proteasome pathway. HSP90 expression is upregulated in cancers, and this contributes to the malignant phenotype of increased proliferation and decreased apoptosis and maintenance of metastatic potential via conservation of its client proteins, including human epidermal growth factor receptor 2, anaplastic lymphoma kinase, androgen receptor, estrogen receptor, Akt, Raf-1, cell cycle proteins, and B-cell lymphoma 2 among others. Hence, inhibition of HSP90 leads to the simultaneous degradation of its many clients, thereby disrupting multiple oncogenic signaling cascades. This has sparked tremendous interest in the development of HSP90 inhibitors as an innovative anticancer strategy. Based on the wealth of compelling data from preclinical studies, a number of HSP90 inhibitors have entered into clinical testing. However, despite enormous promise and anticancer activity reported to date, none of the HSP90 inhibitors in development has been approved for cancer therapy, and the full potential of this class of agents is yet to be realized. This article provides a review on ganetespib, a small molecule HSP90 inhibitor that is currently under evaluation in a broad range of cancer types in combination with other therapeutic agents with the hope of further enhancing its efficacy and overcoming drug resistance. Based on our current understanding of the complex HSP90 machinery combined with the emerging data from these key clinical trials, ganetespib has the potential to be the first-in-class HSP90 inhibitor to be approved as a new anticancer therapy. Keywords: HSP90, lung cancer, breast cancer, colorectal cancer
url http://www.dovepress.com/ganetespib-research-and-clinical-development-peer-reviewed-article-OTT
work_keys_str_mv AT jhaverik ganetespibresearchandclinicaldevelopment
AT modis ganetespibresearchandclinicaldevelopment
_version_ 1725737111040032768