Sentiment Digitization Modeling for Recommendation System

As the importance of providing personalized services increases, various studies on personalized recommendation systems are actively being conducted. Among the many methods used for recommendation systems, the most widely used is collaborative filtering. However, this method has lower accuracy becaus...

Full description

Bibliographic Details
Main Authors: Tae-Yeun Kim, Sung Bum Pan, Sung-Hwan Kim
Format: Article
Language:English
Published: MDPI AG 2020-06-01
Series:Sustainability
Subjects:
Online Access:https://www.mdpi.com/2071-1050/12/12/5191
Description
Summary:As the importance of providing personalized services increases, various studies on personalized recommendation systems are actively being conducted. Among the many methods used for recommendation systems, the most widely used is collaborative filtering. However, this method has lower accuracy because recommendations are limited to using quantitative information, such as user ratings or amount of use. To address this issue, many studies have been conducted to improve the accuracy of the recommendation system by using other types of information, in addition to quantitative information. Although conducting sentiment analysis using reviews is popular, previous studies show the limitation that results of sentiment analysis cannot be directly reflected in recommendation systems. Therefore, this study aims to quantify the sentiments presented in the reviews and reflect the results to the ratings; that is, this study proposes a new algorithm that quantifies the sentiments of user-written reviews and converts them into quantitative information, which can be directly reflected in recommendation systems. To achieve this, the user reviews, which are qualitative information, must first be quantified. Thus, in this study, sentiment scores are calculated through sentiment analysis by using a text mining technique. The data used herein are from movie reviews. A domain-specific sentiment dictionary was constructed, and then based on the dictionary, sentiment scores of the reviews were calculated. The collaborative filtering of this study, which reflected the sentiment scores of user reviews, was verified to demonstrate its higher accuracy than the collaborative filtering using the traditional method, which reflects only user rating data. To overcome the limitations of the previous studies that examined the sentiments of users based only on user rating data, the method proposed in this study successfully enhanced the accuracy of the recommendation system by precisely reflecting user opinions through quantified user reviews. Based on the findings of this study, the recommendation system accuracy is expected to improve further if additional analysis can be performed.
ISSN:2071-1050