On Some Sufficient Conditions for a Function to Be <i>p</i>-Valent Starlike
A function <i>f</i> analytic in a domain <inline-formula> <math display="inline"> <semantics> <mrow> <mi>D</mi> <mo>∈</mo> <mi mathvariant="double-struck">C</mi> </mrow> </semantics> <...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-11-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/11/11/1417 |
id |
doaj-ff93d3ce48df4958ad3d8fe7ccaadb9b |
---|---|
record_format |
Article |
spelling |
doaj-ff93d3ce48df4958ad3d8fe7ccaadb9b2020-11-25T01:33:24ZengMDPI AGSymmetry2073-89942019-11-011111141710.3390/sym11111417sym11111417On Some Sufficient Conditions for a Function to Be <i>p</i>-Valent StarlikeMamoru Nunokawa0Janusz Sokół1Edyta Trybucka2Department of Mathematics, University of Gunma, Hoshikuki-cho 798-8, Chuou-Ward, Chiba 260-0808, JapanCollege of Natural Sciences, University of Rzeszów, ul. Prof. Pigonia 1, 35-310 Rzeszów, PolandCollege of Natural Sciences, University of Rzeszów, ul. Prof. Pigonia 1, 35-310 Rzeszów, PolandA function <i>f</i> analytic in a domain <inline-formula> <math display="inline"> <semantics> <mrow> <mi>D</mi> <mo>∈</mo> <mi mathvariant="double-struck">C</mi> </mrow> </semantics> </math> </inline-formula> is called <i>p</i>-valent in <i>D</i>, if for every complex number <i>w</i>, the equation <inline-formula> <math display="inline"> <semantics> <mrow> <mi>f</mi> <mo>(</mo> <mi>z</mi> <mo>)</mo> <mo>=</mo> <mi>w</mi> </mrow> </semantics> </math> </inline-formula> has at most <i>p</i> roots in <i>D</i>, so that there exists a complex number <inline-formula> <math display="inline"> <semantics> <msub> <mi>w</mi> <mn>0</mn> </msub> </semantics> </math> </inline-formula> such that the equation <inline-formula> <math display="inline"> <semantics> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>w</mi> <mn>0</mn> </msub> </mrow> </semantics> </math> </inline-formula> has exactly <i>p</i> roots in <i>D</i>. The aim of this paper is to establish some sufficient conditions for a function analytic in the unit disc <inline-formula> <math display="inline"> <semantics> <mi mathvariant="double-struck">D</mi> </semantics> </math> </inline-formula> to be <i>p</i>-valent starlike in <inline-formula> <math display="inline"> <semantics> <mi mathvariant="double-struck">D</mi> </semantics> </math> </inline-formula> or to be at most <i>p</i>-valent in <inline-formula> <math display="inline"> <semantics> <mi mathvariant="double-struck">D</mi> </semantics> </math> </inline-formula>. Our results are proved mainly by applying Nunokawa’s lemmas.https://www.mdpi.com/2073-8994/11/11/1417univalent functionsstarlikeconvexclose-to-conve |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Mamoru Nunokawa Janusz Sokół Edyta Trybucka |
spellingShingle |
Mamoru Nunokawa Janusz Sokół Edyta Trybucka On Some Sufficient Conditions for a Function to Be <i>p</i>-Valent Starlike Symmetry univalent functions starlike convex close-to-conve |
author_facet |
Mamoru Nunokawa Janusz Sokół Edyta Trybucka |
author_sort |
Mamoru Nunokawa |
title |
On Some Sufficient Conditions for a Function to Be <i>p</i>-Valent Starlike |
title_short |
On Some Sufficient Conditions for a Function to Be <i>p</i>-Valent Starlike |
title_full |
On Some Sufficient Conditions for a Function to Be <i>p</i>-Valent Starlike |
title_fullStr |
On Some Sufficient Conditions for a Function to Be <i>p</i>-Valent Starlike |
title_full_unstemmed |
On Some Sufficient Conditions for a Function to Be <i>p</i>-Valent Starlike |
title_sort |
on some sufficient conditions for a function to be <i>p</i>-valent starlike |
publisher |
MDPI AG |
series |
Symmetry |
issn |
2073-8994 |
publishDate |
2019-11-01 |
description |
A function <i>f</i> analytic in a domain <inline-formula> <math display="inline"> <semantics> <mrow> <mi>D</mi> <mo>∈</mo> <mi mathvariant="double-struck">C</mi> </mrow> </semantics> </math> </inline-formula> is called <i>p</i>-valent in <i>D</i>, if for every complex number <i>w</i>, the equation <inline-formula> <math display="inline"> <semantics> <mrow> <mi>f</mi> <mo>(</mo> <mi>z</mi> <mo>)</mo> <mo>=</mo> <mi>w</mi> </mrow> </semantics> </math> </inline-formula> has at most <i>p</i> roots in <i>D</i>, so that there exists a complex number <inline-formula> <math display="inline"> <semantics> <msub> <mi>w</mi> <mn>0</mn> </msub> </semantics> </math> </inline-formula> such that the equation <inline-formula> <math display="inline"> <semantics> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>w</mi> <mn>0</mn> </msub> </mrow> </semantics> </math> </inline-formula> has exactly <i>p</i> roots in <i>D</i>. The aim of this paper is to establish some sufficient conditions for a function analytic in the unit disc <inline-formula> <math display="inline"> <semantics> <mi mathvariant="double-struck">D</mi> </semantics> </math> </inline-formula> to be <i>p</i>-valent starlike in <inline-formula> <math display="inline"> <semantics> <mi mathvariant="double-struck">D</mi> </semantics> </math> </inline-formula> or to be at most <i>p</i>-valent in <inline-formula> <math display="inline"> <semantics> <mi mathvariant="double-struck">D</mi> </semantics> </math> </inline-formula>. Our results are proved mainly by applying Nunokawa’s lemmas. |
topic |
univalent functions starlike convex close-to-conve |
url |
https://www.mdpi.com/2073-8994/11/11/1417 |
work_keys_str_mv |
AT mamorununokawa onsomesufficientconditionsforafunctiontobeipivalentstarlike AT januszsokoł onsomesufficientconditionsforafunctiontobeipivalentstarlike AT edytatrybucka onsomesufficientconditionsforafunctiontobeipivalentstarlike |
_version_ |
1725077423845801984 |