On Some Sufficient Conditions for a Function to Be <i>p</i>-Valent Starlike

A function <i>f</i> analytic in a domain <inline-formula> <math display="inline"> <semantics> <mrow> <mi>D</mi> <mo>&#8712;</mo> <mi mathvariant="double-struck">C</mi> </mrow> </semantics> <...

Full description

Bibliographic Details
Main Authors: Mamoru Nunokawa, Janusz Sokół, Edyta Trybucka
Format: Article
Language:English
Published: MDPI AG 2019-11-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/11/11/1417
id doaj-ff93d3ce48df4958ad3d8fe7ccaadb9b
record_format Article
spelling doaj-ff93d3ce48df4958ad3d8fe7ccaadb9b2020-11-25T01:33:24ZengMDPI AGSymmetry2073-89942019-11-011111141710.3390/sym11111417sym11111417On Some Sufficient Conditions for a Function to Be <i>p</i>-Valent StarlikeMamoru Nunokawa0Janusz Sokół1Edyta Trybucka2Department of Mathematics, University of Gunma, Hoshikuki-cho 798-8, Chuou-Ward, Chiba 260-0808, JapanCollege of Natural Sciences, University of Rzeszów, ul. Prof. Pigonia 1, 35-310 Rzeszów, PolandCollege of Natural Sciences, University of Rzeszów, ul. Prof. Pigonia 1, 35-310 Rzeszów, PolandA function <i>f</i> analytic in a domain <inline-formula> <math display="inline"> <semantics> <mrow> <mi>D</mi> <mo>&#8712;</mo> <mi mathvariant="double-struck">C</mi> </mrow> </semantics> </math> </inline-formula> is called <i>p</i>-valent in <i>D</i>, if for every complex number <i>w</i>, the equation <inline-formula> <math display="inline"> <semantics> <mrow> <mi>f</mi> <mo>(</mo> <mi>z</mi> <mo>)</mo> <mo>=</mo> <mi>w</mi> </mrow> </semantics> </math> </inline-formula> has at most <i>p</i> roots in <i>D</i>, so that there exists a complex number <inline-formula> <math display="inline"> <semantics> <msub> <mi>w</mi> <mn>0</mn> </msub> </semantics> </math> </inline-formula> such that the equation <inline-formula> <math display="inline"> <semantics> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>w</mi> <mn>0</mn> </msub> </mrow> </semantics> </math> </inline-formula> has exactly <i>p</i> roots in <i>D</i>. The aim of this paper is to establish some sufficient conditions for a function analytic in the unit disc <inline-formula> <math display="inline"> <semantics> <mi mathvariant="double-struck">D</mi> </semantics> </math> </inline-formula> to be <i>p</i>-valent starlike in <inline-formula> <math display="inline"> <semantics> <mi mathvariant="double-struck">D</mi> </semantics> </math> </inline-formula> or to be at most <i>p</i>-valent in <inline-formula> <math display="inline"> <semantics> <mi mathvariant="double-struck">D</mi> </semantics> </math> </inline-formula>. Our results are proved mainly by applying Nunokawa&#8217;s lemmas.https://www.mdpi.com/2073-8994/11/11/1417univalent functionsstarlikeconvexclose-to-conve
collection DOAJ
language English
format Article
sources DOAJ
author Mamoru Nunokawa
Janusz Sokół
Edyta Trybucka
spellingShingle Mamoru Nunokawa
Janusz Sokół
Edyta Trybucka
On Some Sufficient Conditions for a Function to Be <i>p</i>-Valent Starlike
Symmetry
univalent functions
starlike
convex
close-to-conve
author_facet Mamoru Nunokawa
Janusz Sokół
Edyta Trybucka
author_sort Mamoru Nunokawa
title On Some Sufficient Conditions for a Function to Be <i>p</i>-Valent Starlike
title_short On Some Sufficient Conditions for a Function to Be <i>p</i>-Valent Starlike
title_full On Some Sufficient Conditions for a Function to Be <i>p</i>-Valent Starlike
title_fullStr On Some Sufficient Conditions for a Function to Be <i>p</i>-Valent Starlike
title_full_unstemmed On Some Sufficient Conditions for a Function to Be <i>p</i>-Valent Starlike
title_sort on some sufficient conditions for a function to be <i>p</i>-valent starlike
publisher MDPI AG
series Symmetry
issn 2073-8994
publishDate 2019-11-01
description A function <i>f</i> analytic in a domain <inline-formula> <math display="inline"> <semantics> <mrow> <mi>D</mi> <mo>&#8712;</mo> <mi mathvariant="double-struck">C</mi> </mrow> </semantics> </math> </inline-formula> is called <i>p</i>-valent in <i>D</i>, if for every complex number <i>w</i>, the equation <inline-formula> <math display="inline"> <semantics> <mrow> <mi>f</mi> <mo>(</mo> <mi>z</mi> <mo>)</mo> <mo>=</mo> <mi>w</mi> </mrow> </semantics> </math> </inline-formula> has at most <i>p</i> roots in <i>D</i>, so that there exists a complex number <inline-formula> <math display="inline"> <semantics> <msub> <mi>w</mi> <mn>0</mn> </msub> </semantics> </math> </inline-formula> such that the equation <inline-formula> <math display="inline"> <semantics> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>w</mi> <mn>0</mn> </msub> </mrow> </semantics> </math> </inline-formula> has exactly <i>p</i> roots in <i>D</i>. The aim of this paper is to establish some sufficient conditions for a function analytic in the unit disc <inline-formula> <math display="inline"> <semantics> <mi mathvariant="double-struck">D</mi> </semantics> </math> </inline-formula> to be <i>p</i>-valent starlike in <inline-formula> <math display="inline"> <semantics> <mi mathvariant="double-struck">D</mi> </semantics> </math> </inline-formula> or to be at most <i>p</i>-valent in <inline-formula> <math display="inline"> <semantics> <mi mathvariant="double-struck">D</mi> </semantics> </math> </inline-formula>. Our results are proved mainly by applying Nunokawa&#8217;s lemmas.
topic univalent functions
starlike
convex
close-to-conve
url https://www.mdpi.com/2073-8994/11/11/1417
work_keys_str_mv AT mamorununokawa onsomesufficientconditionsforafunctiontobeipivalentstarlike
AT januszsokoł onsomesufficientconditionsforafunctiontobeipivalentstarlike
AT edytatrybucka onsomesufficientconditionsforafunctiontobeipivalentstarlike
_version_ 1725077423845801984