A Novel Miniature Culture System to Screen CO2-Sequestering Microalgae

In this study, a novel 96-well microplate swivel system (M96SS) was built for high-throughput screening of microalgal strains for CO2 fixation. Cell growth under different CO2 supply conditions (0.2, 0.4, 0.8, and 1.2 g L−1 d−1), residual nitrate, and pH value of Chlorella sp. SJTU-3, Chlorella pyre...

Full description

Bibliographic Details
Main Authors: Xiaoling Miao, Chunying Li, Wei Han, Guangxin Yu
Format: Article
Language:English
Published: MDPI AG 2012-11-01
Series:Energies
Subjects:
Online Access:http://www.mdpi.com/1996-1073/5/11/4372
Description
Summary:In this study, a novel 96-well microplate swivel system (M96SS) was built for high-throughput screening of microalgal strains for CO2 fixation. Cell growth under different CO2 supply conditions (0.2, 0.4, 0.8, and 1.2 g L−1 d−1), residual nitrate, and pH value of Chlorella sp. SJTU-3, Chlorella pyrenoidosa SJTU-2, and Scenedesmus obliquus SJTU-3 were examined in the M96SS and traditional flask cultures. The dynamic data showed there was a good agreement between the systems. Two critical problems in miniature culture systems (intra-well mixing and evaporation loss) were improved by sealed vertical mixing of the M96SS. A sample screen of six microalgal species (Chlorella sp. SJTU-3, Chlorella pyrenoidosa SJTU-2, Selenastrum capricornutum, Scenedesmus obliquus SJTU-3, Chlamydomonas sajao, Dunaliella primolecta) was carried out in flasks and the M96SS. Chlamydomonas sajao appeared to be a robust performer (highest cell density: 1.437 g L−1) in anaerobic pond water with 0.8, and 1.2 g L−1 d−1 CO2. The reliability and efficiency of the M96SS were verified through a comparison of traditional flask culture, M96SS, Lukavský’s system, and a microplate shaker.
ISSN:1996-1073