The Representations and Continuity of the Metric Projections on Two Classes of Half-Spaces in Banach Spaces

We show a necessary and sufficient condition for the existence of metric projection on a class of half-space Kx0*,c={x∈X:x*(x)≤c} in Banach space. Two representations of metric projections PKx0*,c and PKx0,c are given, respectively, where Kx0,c stands for dual half-space of Kx0*,c in dual space X*....

Full description

Bibliographic Details
Main Authors: Zihou Zhang, Chunyan Liu
Format: Article
Language:English
Published: Hindawi Limited 2014-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2014/908676
Description
Summary:We show a necessary and sufficient condition for the existence of metric projection on a class of half-space Kx0*,c={x∈X:x*(x)≤c} in Banach space. Two representations of metric projections PKx0*,c and PKx0,c are given, respectively, where Kx0,c stands for dual half-space of Kx0*,c in dual space X*. By these representations, a series of continuity results of the metric projections PKx0*,c and PKx0,c are given. We also provide the characterization that a metric projection is a linear bounded operator.
ISSN:1085-3375
1687-0409