Specifying the Unitary Evolution of a Qudit for a General Nonstationary Hamiltonian via the Generalized Gell-Mann Representation

Optimal realizations of quantum technology tasks lead to the necessity of a detailed analytical study of the behavior of a <i>d</i>-level quantum system (qudit) under a time-dependent Hamiltonian. In the present article, we introduce a new general formalism describing the unitary evoluti...

Full description

Bibliographic Details
Main Authors: Elena R. Loubenets, Christian Käding
Format: Article
Language:English
Published: MDPI AG 2020-05-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/22/5/521
id doaj-ff5ab52b19214b05b08c97803f031bcf
record_format Article
spelling doaj-ff5ab52b19214b05b08c97803f031bcf2020-11-25T02:13:05ZengMDPI AGEntropy1099-43002020-05-012252152110.3390/e22050521Specifying the Unitary Evolution of a Qudit for a General Nonstationary Hamiltonian via the Generalized Gell-Mann RepresentationElena R. Loubenets0Christian Käding1Applied Mathematics Department, National Research University Higher School of Economics, 101000 Moscow, RussiaApplied Mathematics Department, National Research University Higher School of Economics, 101000 Moscow, RussiaOptimal realizations of quantum technology tasks lead to the necessity of a detailed analytical study of the behavior of a <i>d</i>-level quantum system (qudit) under a time-dependent Hamiltonian. In the present article, we introduce a new general formalism describing the unitary evolution of a qudit <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>d</mi> <mo>≥</mo> <mn>2</mn> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> in terms of the Bloch-like vector space and specify how, in a general case, this formalism is related to finding time-dependent parameters in the exponential representation of the evolution operator under an arbitrary time-dependent Hamiltonian. Applying this new general formalism to a qubit case <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>d</mi> <mo>=</mo> <mn>2</mn> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>, we specify the unitary evolution of a qubit via the evolution of a unit vector in <inline-formula> <math display="inline"> <semantics> <msup> <mi mathvariant="double-struck">R</mi> <mn>4</mn> </msup> </semantics> </math> </inline-formula>, and this allows us to derive the precise analytical expression of the qubit unitary evolution operator for a wide class of nonstationary Hamiltonians. This new analytical expression includes the qubit solutions known in the literature only as particular cases.https://www.mdpi.com/1099-4300/22/5/521unitary evolution of a quditnonstationary Hamiltonianexponential representationBloch-like vector spaceanalytical solutions
collection DOAJ
language English
format Article
sources DOAJ
author Elena R. Loubenets
Christian Käding
spellingShingle Elena R. Loubenets
Christian Käding
Specifying the Unitary Evolution of a Qudit for a General Nonstationary Hamiltonian via the Generalized Gell-Mann Representation
Entropy
unitary evolution of a qudit
nonstationary Hamiltonian
exponential representation
Bloch-like vector space
analytical solutions
author_facet Elena R. Loubenets
Christian Käding
author_sort Elena R. Loubenets
title Specifying the Unitary Evolution of a Qudit for a General Nonstationary Hamiltonian via the Generalized Gell-Mann Representation
title_short Specifying the Unitary Evolution of a Qudit for a General Nonstationary Hamiltonian via the Generalized Gell-Mann Representation
title_full Specifying the Unitary Evolution of a Qudit for a General Nonstationary Hamiltonian via the Generalized Gell-Mann Representation
title_fullStr Specifying the Unitary Evolution of a Qudit for a General Nonstationary Hamiltonian via the Generalized Gell-Mann Representation
title_full_unstemmed Specifying the Unitary Evolution of a Qudit for a General Nonstationary Hamiltonian via the Generalized Gell-Mann Representation
title_sort specifying the unitary evolution of a qudit for a general nonstationary hamiltonian via the generalized gell-mann representation
publisher MDPI AG
series Entropy
issn 1099-4300
publishDate 2020-05-01
description Optimal realizations of quantum technology tasks lead to the necessity of a detailed analytical study of the behavior of a <i>d</i>-level quantum system (qudit) under a time-dependent Hamiltonian. In the present article, we introduce a new general formalism describing the unitary evolution of a qudit <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>d</mi> <mo>≥</mo> <mn>2</mn> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> in terms of the Bloch-like vector space and specify how, in a general case, this formalism is related to finding time-dependent parameters in the exponential representation of the evolution operator under an arbitrary time-dependent Hamiltonian. Applying this new general formalism to a qubit case <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>d</mi> <mo>=</mo> <mn>2</mn> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>, we specify the unitary evolution of a qubit via the evolution of a unit vector in <inline-formula> <math display="inline"> <semantics> <msup> <mi mathvariant="double-struck">R</mi> <mn>4</mn> </msup> </semantics> </math> </inline-formula>, and this allows us to derive the precise analytical expression of the qubit unitary evolution operator for a wide class of nonstationary Hamiltonians. This new analytical expression includes the qubit solutions known in the literature only as particular cases.
topic unitary evolution of a qudit
nonstationary Hamiltonian
exponential representation
Bloch-like vector space
analytical solutions
url https://www.mdpi.com/1099-4300/22/5/521
work_keys_str_mv AT elenarloubenets specifyingtheunitaryevolutionofaquditforageneralnonstationaryhamiltonianviathegeneralizedgellmannrepresentation
AT christiankading specifyingtheunitaryevolutionofaquditforageneralnonstationaryhamiltonianviathegeneralizedgellmannrepresentation
_version_ 1724906374757875712