THE SPECTRAL METHOD OF OPTIMAL FILTERING AND EXTRAPOLATION FOR JUMP-DIFFUSION MODELS
The article deals with the optimal filtering and extrapolation problems for non-stationary stochastic differential systems with a Poisson component. To find an approximate density of the observed object’s state vector the spectral method based on the representation of robust Duncan-Mortensen-Zakai e...
Main Author: | |
---|---|
Format: | Article |
Language: | Russian |
Published: |
Moscow State Technical University of Civil Aviation
2016-12-01
|
Series: | Naučnyj Vestnik MGTU GA |
Subjects: | |
Online Access: | https://avia.mstuca.ru/jour/article/view/849 |
id |
doaj-ff32c190592d4479a9e0b6e022a2074c |
---|---|
record_format |
Article |
spelling |
doaj-ff32c190592d4479a9e0b6e022a2074c2021-07-28T21:00:38ZrusMoscow State Technical University of Civil Aviation Naučnyj Vestnik MGTU GA2079-06192542-01192016-12-0102241423849THE SPECTRAL METHOD OF OPTIMAL FILTERING AND EXTRAPOLATION FOR JUMP-DIFFUSION MODELSK. A. Rybakov0МАИThe article deals with the optimal filtering and extrapolation problems for non-stationary stochastic differential systems with a Poisson component. To find an approximate density of the observed object’s state vector the spectral method based on the representation of robust Duncan-Mortensen-Zakai equation and Kolmogorov-Feller equation solutions in the form of orthogonal series is used.https://avia.mstuca.ru/jour/article/view/849conditional densityextrapolation problemjump-diffusionkolmogorov-feller equationfiltering problemrobust duncan-mortensen-zakai equationspectral methodstochastic system |
collection |
DOAJ |
language |
Russian |
format |
Article |
sources |
DOAJ |
author |
K. A. Rybakov |
spellingShingle |
K. A. Rybakov THE SPECTRAL METHOD OF OPTIMAL FILTERING AND EXTRAPOLATION FOR JUMP-DIFFUSION MODELS Naučnyj Vestnik MGTU GA conditional density extrapolation problem jump-diffusion kolmogorov-feller equation filtering problem robust duncan-mortensen-zakai equation spectral method stochastic system |
author_facet |
K. A. Rybakov |
author_sort |
K. A. Rybakov |
title |
THE SPECTRAL METHOD OF OPTIMAL FILTERING AND EXTRAPOLATION FOR JUMP-DIFFUSION MODELS |
title_short |
THE SPECTRAL METHOD OF OPTIMAL FILTERING AND EXTRAPOLATION FOR JUMP-DIFFUSION MODELS |
title_full |
THE SPECTRAL METHOD OF OPTIMAL FILTERING AND EXTRAPOLATION FOR JUMP-DIFFUSION MODELS |
title_fullStr |
THE SPECTRAL METHOD OF OPTIMAL FILTERING AND EXTRAPOLATION FOR JUMP-DIFFUSION MODELS |
title_full_unstemmed |
THE SPECTRAL METHOD OF OPTIMAL FILTERING AND EXTRAPOLATION FOR JUMP-DIFFUSION MODELS |
title_sort |
spectral method of optimal filtering and extrapolation for jump-diffusion models |
publisher |
Moscow State Technical University of Civil Aviation |
series |
Naučnyj Vestnik MGTU GA |
issn |
2079-0619 2542-0119 |
publishDate |
2016-12-01 |
description |
The article deals with the optimal filtering and extrapolation problems for non-stationary stochastic differential systems with a Poisson component. To find an approximate density of the observed object’s state vector the spectral method based on the representation of robust Duncan-Mortensen-Zakai equation and Kolmogorov-Feller equation solutions in the form of orthogonal series is used. |
topic |
conditional density extrapolation problem jump-diffusion kolmogorov-feller equation filtering problem robust duncan-mortensen-zakai equation spectral method stochastic system |
url |
https://avia.mstuca.ru/jour/article/view/849 |
work_keys_str_mv |
AT karybakov thespectralmethodofoptimalfilteringandextrapolationforjumpdiffusionmodels AT karybakov spectralmethodofoptimalfilteringandextrapolationforjumpdiffusionmodels |
_version_ |
1721263655003095040 |