Climate and air quality impacts due to mitigation of non-methane near-term climate forcers

<p>It is important to understand how future environmental policies will impact both climate change and air pollution. Although targeting near-term climate forcers (NTCFs), defined here as aerosols, tropospheric ozone, and precursor gases, should improve air quality, NTCF reductions will also...

Full description

Bibliographic Details
Main Authors: R. J. Allen, S. Turnock, P. Nabat, D. Neubauer, U. Lohmann, D. Olivié, N. Oshima, M. Michou, T. Wu, J. Zhang, T. Takemura, M. Schulz, K. Tsigaridis, S. E. Bauer, L. Emmons, L. Horowitz, V. Naik, T. van Noije, T. Bergman, J.-F. Lamarque, P. Zanis, I. Tegen, D. M. Westervelt, P. Le Sager, P. Good, S. Shim, F. O'Connor, D. Akritidis, A. K. Georgoulias, M. Deushi, L. T. Sentman, J. G. John, S. Fujimori, W. J. Collins
Format: Article
Language:English
Published: Copernicus Publications 2020-08-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/20/9641/2020/acp-20-9641-2020.pdf
id doaj-ff28674986174f34b48cc99574175896
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author R. J. Allen
S. Turnock
P. Nabat
D. Neubauer
U. Lohmann
D. Olivié
N. Oshima
M. Michou
T. Wu
J. Zhang
T. Takemura
M. Schulz
K. Tsigaridis
S. E. Bauer
L. Emmons
L. Horowitz
V. Naik
T. van Noije
T. Bergman
T. Bergman
J.-F. Lamarque
P. Zanis
I. Tegen
D. M. Westervelt
P. Le Sager
P. Good
S. Shim
F. O'Connor
D. Akritidis
A. K. Georgoulias
M. Deushi
L. T. Sentman
J. G. John
S. Fujimori
S. Fujimori
S. Fujimori
W. J. Collins
spellingShingle R. J. Allen
S. Turnock
P. Nabat
D. Neubauer
U. Lohmann
D. Olivié
N. Oshima
M. Michou
T. Wu
J. Zhang
T. Takemura
M. Schulz
K. Tsigaridis
S. E. Bauer
L. Emmons
L. Horowitz
V. Naik
T. van Noije
T. Bergman
T. Bergman
J.-F. Lamarque
P. Zanis
I. Tegen
D. M. Westervelt
P. Le Sager
P. Good
S. Shim
F. O'Connor
D. Akritidis
A. K. Georgoulias
M. Deushi
L. T. Sentman
J. G. John
S. Fujimori
S. Fujimori
S. Fujimori
W. J. Collins
Climate and air quality impacts due to mitigation of non-methane near-term climate forcers
Atmospheric Chemistry and Physics
author_facet R. J. Allen
S. Turnock
P. Nabat
D. Neubauer
U. Lohmann
D. Olivié
N. Oshima
M. Michou
T. Wu
J. Zhang
T. Takemura
M. Schulz
K. Tsigaridis
S. E. Bauer
L. Emmons
L. Horowitz
V. Naik
T. van Noije
T. Bergman
T. Bergman
J.-F. Lamarque
P. Zanis
I. Tegen
D. M. Westervelt
P. Le Sager
P. Good
S. Shim
F. O'Connor
D. Akritidis
A. K. Georgoulias
M. Deushi
L. T. Sentman
J. G. John
S. Fujimori
S. Fujimori
S. Fujimori
W. J. Collins
author_sort R. J. Allen
title Climate and air quality impacts due to mitigation of non-methane near-term climate forcers
title_short Climate and air quality impacts due to mitigation of non-methane near-term climate forcers
title_full Climate and air quality impacts due to mitigation of non-methane near-term climate forcers
title_fullStr Climate and air quality impacts due to mitigation of non-methane near-term climate forcers
title_full_unstemmed Climate and air quality impacts due to mitigation of non-methane near-term climate forcers
title_sort climate and air quality impacts due to mitigation of non-methane near-term climate forcers
publisher Copernicus Publications
series Atmospheric Chemistry and Physics
issn 1680-7316
1680-7324
publishDate 2020-08-01
description <p>It is important to understand how future environmental policies will impact both climate change and air pollution. Although targeting near-term climate forcers (NTCFs), defined here as aerosols, tropospheric ozone, and precursor gases, should improve air quality, NTCF reductions will also impact climate. Prior assessments of the impact of NTCF mitigation on air quality and climate have been limited. This is related to the idealized nature of some prior studies, simplified treatment of aerosols and chemically reactive gases, as well as a lack of a sufficiently large number of models to quantify model diversity and robust responses. Here, we quantify the 2015–2055 climate and air quality effects of non-methane NTCFs using nine state-of-the-art chemistry–climate model simulations conducted for the Aerosol and Chemistry Model Intercomparison Project (AerChemMIP). Simulations are driven by two future scenarios featuring similar increases in greenhouse gases (GHGs) but with “weak” (SSP3-7.0) versus “strong” (SSP3-7.0-lowNTCF) levels of air quality control measures. As SSP3-7.0 lacks climate policy and has the highest levels of NTCFs, our results (e.g., surface warming) represent an upper bound. Unsurprisingly, we find significant improvements in air quality under NTCF mitigation (strong versus weak air quality controls). Surface fine particulate matter (PM<span class="inline-formula"><sub>2.5</sub></span>) and ozone (<span class="inline-formula">O<sub>3</sub></span>) decrease by <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">2.2</mn><mo>±</mo><mn mathvariant="normal">0.32</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="58pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="e7d1e4510ab8d9bb4ca42781032653c5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-9641-2020-ie00001.svg" width="58pt" height="10pt" src="acp-20-9641-2020-ie00001.png"/></svg:svg></span></span>&thinsp;<span class="inline-formula">µ</span>g&thinsp;m<span class="inline-formula"><sup>−3</sup></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">4.6</mn><mo>±</mo><mn mathvariant="normal">0.88</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="58pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="43a101e9a2dd921e24c5cb40f6eb38ea"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-9641-2020-ie00002.svg" width="58pt" height="10pt" src="acp-20-9641-2020-ie00002.png"/></svg:svg></span></span>&thinsp;ppb, respectively (changes quoted here are for the entire 2015–2055 time period; uncertainty represents the 95&thinsp;% confidence interval), over global land surfaces, with larger reductions in some regions including south and southeast Asia. Non-methane NTCF mitigation, however, leads to additional climate change due to the removal of aerosol which causes a net warming effect, including global mean surface temperature and precipitation increases of <span class="inline-formula">0.25±0.12</span>&thinsp;K and <span class="inline-formula">0.03±0.012</span>&thinsp;mm&thinsp;d<span class="inline-formula"><sup>−1</sup></span>, respectively. Similarly, increases in extreme weather indices, including the hottest and wettest days, also occur. Regionally, the largest warming and wetting occurs over Asia, including central and north Asia (<span class="inline-formula">0.66±0.20</span>&thinsp;K and <span class="inline-formula">0.03±0.02</span>&thinsp;mm&thinsp;d<span class="inline-formula"><sup>−1</sup></span>), south Asia (<span class="inline-formula">0.47±0.16</span>&thinsp;K and <span class="inline-formula">0.17±0.09</span>&thinsp;mm&thinsp;d<span class="inline-formula"><sup>−1</sup></span>), and east Asia (<span class="inline-formula">0.46±0.20</span>&thinsp;K and <span class="inline-formula">0.15±0.06</span>&thinsp;mm&thinsp;d<span class="inline-formula"><sup>−1</sup></span>). Relatively large warming and wetting of the Arctic also occur at <span class="inline-formula">0.59±0.36</span>&thinsp;K and <span class="inline-formula">0.04±0.02</span>&thinsp;mm&thinsp;d<span class="inline-formula"><sup>−1</sup></span>, respectively. Similar surface warming occurs in model simulations with aerosol-only mitigation, implying weak cooling due to ozone reductions. Our findings suggest that future policies that aggressively target non-methane NTCF reductions will improve air quality but will lead to additional surface warming, particularly in Asia and the Arctic. Policies that address other NTCFs including methane, as well as carbon dioxide emissions, must also be adopted to meet climate mitigation goals.</p>
url https://acp.copernicus.org/articles/20/9641/2020/acp-20-9641-2020.pdf
work_keys_str_mv AT rjallen climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers
AT sturnock climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers
AT pnabat climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers
AT dneubauer climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers
AT ulohmann climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers
AT dolivie climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers
AT noshima climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers
AT mmichou climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers
AT twu climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers
AT jzhang climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers
AT ttakemura climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers
AT mschulz climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers
AT ktsigaridis climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers
AT sebauer climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers
AT lemmons climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers
AT lhorowitz climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers
AT vnaik climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers
AT tvannoije climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers
AT tbergman climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers
AT tbergman climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers
AT jflamarque climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers
AT pzanis climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers
AT itegen climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers
AT dmwestervelt climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers
AT plesager climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers
AT pgood climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers
AT sshim climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers
AT foconnor climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers
AT dakritidis climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers
AT akgeorgoulias climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers
AT mdeushi climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers
AT ltsentman climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers
AT jgjohn climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers
AT sfujimori climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers
AT sfujimori climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers
AT sfujimori climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers
AT wjcollins climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers
_version_ 1724526477292077056
spelling doaj-ff28674986174f34b48cc995741758962020-11-25T03:42:13ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242020-08-01209641966310.5194/acp-20-9641-2020Climate and air quality impacts due to mitigation of non-methane near-term climate forcersR. J. Allen0S. Turnock1P. Nabat2D. Neubauer3U. Lohmann4D. Olivié5N. Oshima6M. Michou7T. Wu8J. Zhang9T. Takemura10M. Schulz11K. Tsigaridis12S. E. Bauer13L. Emmons14L. Horowitz15V. Naik16T. van Noije17T. Bergman18T. Bergman19J.-F. Lamarque20P. Zanis21I. Tegen22D. M. Westervelt23P. Le Sager24P. Good25S. Shim26F. O'Connor27D. Akritidis28A. K. Georgoulias29M. Deushi30L. T. Sentman31J. G. John32S. Fujimori33S. Fujimori34S. Fujimori35W. J. Collins36Department of Earth and Planetary Sciences, University of California Riverside, Riverside, CA, USAMet Office Hadley Centre, Exeter, UKCentre National de Recherches Meteorologiques (CNRM), Universite de Toulouse, Météo-France, CNRS, Toulouse, FranceInstitute of Atmospheric and Climate Science, ETH Zurich, Zurich, SwitzerlandInstitute of Atmospheric and Climate Science, ETH Zurich, Zurich, SwitzerlandNorwegian Meteorological Institute, Oslo, NorwayMeteorological Research Institute, Japan Meteorological Agency, Tsukuba, Ibaraki, JapanCentre National de Recherches Meteorologiques (CNRM), Universite de Toulouse, Météo-France, CNRS, Toulouse, FranceClimate System Modeling Division, Beijing Climate Center, China Meteorological Administration, Beijing, ChinaClimate System Modeling Division, Beijing Climate Center, China Meteorological Administration, Beijing, ChinaClimate Change Science Section, Research Institute for Applied Mechanics, Kyushu University, Fukuoka, JapanNorwegian Meteorological Institute, Oslo, NorwayCenter for Climate Systems Research, Columbia University, NASA Goddard Institute for Space Studies, New York, NY, USACenter for Climate Systems Research, Columbia University, NASA Goddard Institute for Space Studies, New York, NY, USAAtmospheric Chemistry Observations and Modelling Lab, National Center for Atmospheric Research, Boulder, CO, USADOC/NOAA/OAR/Geophysical Fluid Dynamics Laboratory, Biogeochemistry, Atmospheric Chemistry, and Ecology Division, Princeton, NJ, USADOC/NOAA/OAR/Geophysical Fluid Dynamics Laboratory, Biogeochemistry, Atmospheric Chemistry, and Ecology Division, Princeton, NJ, USARoyal Netherlands Meteorological Institute, De Bilt, NetherlandsRoyal Netherlands Meteorological Institute, De Bilt, NetherlandsFinnish Meteorological Institute, Helsinki, FinlandNCAR/UCAR, Boulder, CO, USADepartment of Meteorology and Climatology, School of Geology, Aristotle University of Thessaloniki, Thessaloniki, GreeceLeibniz Institute for Tropospheric Research, Leipzig, GermanyLamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USARoyal Netherlands Meteorological Institute, De Bilt, NetherlandsMet Office Hadley Centre, Exeter, UKNational Institute of Meteorological Sciences, Seogwipo-si, Jeju-do, South KoreaMet Office Hadley Centre, Exeter, UKDepartment of Meteorology and Climatology, School of Geology, Aristotle University of Thessaloniki, Thessaloniki, GreeceDepartment of Meteorology and Climatology, School of Geology, Aristotle University of Thessaloniki, Thessaloniki, GreeceMeteorological Research Institute, Japan Meteorological Agency, Tsukuba, Ibaraki, JapanDOC/NOAA/OAR/Geophysical Fluid Dynamics Laboratory, Biogeochemistry, Atmospheric Chemistry, and Ecology Division, Princeton, NJ, USADOC/NOAA/OAR/Geophysical Fluid Dynamics Laboratory, Biogeochemistry, Atmospheric Chemistry, and Ecology Division, Princeton, NJ, USADepartment of Environmental Engineering, Kyoto University, C1-3 361, Kyotodaigaku Katsura, Nishikyoku, Kyoto, JapanCenter for Social and Environmental Systems Research, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki, JapanInternational Institute for Applied System Analysis (IIASA), Schlossplatz 1, Laxenburg, AustriaDepartment of Meteorology, University of Reading, Reading, UK<p>It is important to understand how future environmental policies will impact both climate change and air pollution. Although targeting near-term climate forcers (NTCFs), defined here as aerosols, tropospheric ozone, and precursor gases, should improve air quality, NTCF reductions will also impact climate. Prior assessments of the impact of NTCF mitigation on air quality and climate have been limited. This is related to the idealized nature of some prior studies, simplified treatment of aerosols and chemically reactive gases, as well as a lack of a sufficiently large number of models to quantify model diversity and robust responses. Here, we quantify the 2015–2055 climate and air quality effects of non-methane NTCFs using nine state-of-the-art chemistry–climate model simulations conducted for the Aerosol and Chemistry Model Intercomparison Project (AerChemMIP). Simulations are driven by two future scenarios featuring similar increases in greenhouse gases (GHGs) but with “weak” (SSP3-7.0) versus “strong” (SSP3-7.0-lowNTCF) levels of air quality control measures. As SSP3-7.0 lacks climate policy and has the highest levels of NTCFs, our results (e.g., surface warming) represent an upper bound. Unsurprisingly, we find significant improvements in air quality under NTCF mitigation (strong versus weak air quality controls). Surface fine particulate matter (PM<span class="inline-formula"><sub>2.5</sub></span>) and ozone (<span class="inline-formula">O<sub>3</sub></span>) decrease by <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">2.2</mn><mo>±</mo><mn mathvariant="normal">0.32</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="58pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="e7d1e4510ab8d9bb4ca42781032653c5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-9641-2020-ie00001.svg" width="58pt" height="10pt" src="acp-20-9641-2020-ie00001.png"/></svg:svg></span></span>&thinsp;<span class="inline-formula">µ</span>g&thinsp;m<span class="inline-formula"><sup>−3</sup></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">4.6</mn><mo>±</mo><mn mathvariant="normal">0.88</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="58pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="43a101e9a2dd921e24c5cb40f6eb38ea"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-9641-2020-ie00002.svg" width="58pt" height="10pt" src="acp-20-9641-2020-ie00002.png"/></svg:svg></span></span>&thinsp;ppb, respectively (changes quoted here are for the entire 2015–2055 time period; uncertainty represents the 95&thinsp;% confidence interval), over global land surfaces, with larger reductions in some regions including south and southeast Asia. Non-methane NTCF mitigation, however, leads to additional climate change due to the removal of aerosol which causes a net warming effect, including global mean surface temperature and precipitation increases of <span class="inline-formula">0.25±0.12</span>&thinsp;K and <span class="inline-formula">0.03±0.012</span>&thinsp;mm&thinsp;d<span class="inline-formula"><sup>−1</sup></span>, respectively. Similarly, increases in extreme weather indices, including the hottest and wettest days, also occur. Regionally, the largest warming and wetting occurs over Asia, including central and north Asia (<span class="inline-formula">0.66±0.20</span>&thinsp;K and <span class="inline-formula">0.03±0.02</span>&thinsp;mm&thinsp;d<span class="inline-formula"><sup>−1</sup></span>), south Asia (<span class="inline-formula">0.47±0.16</span>&thinsp;K and <span class="inline-formula">0.17±0.09</span>&thinsp;mm&thinsp;d<span class="inline-formula"><sup>−1</sup></span>), and east Asia (<span class="inline-formula">0.46±0.20</span>&thinsp;K and <span class="inline-formula">0.15±0.06</span>&thinsp;mm&thinsp;d<span class="inline-formula"><sup>−1</sup></span>). Relatively large warming and wetting of the Arctic also occur at <span class="inline-formula">0.59±0.36</span>&thinsp;K and <span class="inline-formula">0.04±0.02</span>&thinsp;mm&thinsp;d<span class="inline-formula"><sup>−1</sup></span>, respectively. Similar surface warming occurs in model simulations with aerosol-only mitigation, implying weak cooling due to ozone reductions. Our findings suggest that future policies that aggressively target non-methane NTCF reductions will improve air quality but will lead to additional surface warming, particularly in Asia and the Arctic. Policies that address other NTCFs including methane, as well as carbon dioxide emissions, must also be adopted to meet climate mitigation goals.</p>https://acp.copernicus.org/articles/20/9641/2020/acp-20-9641-2020.pdf