Climate and air quality impacts due to mitigation of non-methane near-term climate forcers
<p>It is important to understand how future environmental policies will impact both climate change and air pollution. Although targeting near-term climate forcers (NTCFs), defined here as aerosols, tropospheric ozone, and precursor gases, should improve air quality, NTCF reductions will also...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2020-08-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://acp.copernicus.org/articles/20/9641/2020/acp-20-9641-2020.pdf |
id |
doaj-ff28674986174f34b48cc99574175896 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
R. J. Allen S. Turnock P. Nabat D. Neubauer U. Lohmann D. Olivié N. Oshima M. Michou T. Wu J. Zhang T. Takemura M. Schulz K. Tsigaridis S. E. Bauer L. Emmons L. Horowitz V. Naik T. van Noije T. Bergman T. Bergman J.-F. Lamarque P. Zanis I. Tegen D. M. Westervelt P. Le Sager P. Good S. Shim F. O'Connor D. Akritidis A. K. Georgoulias M. Deushi L. T. Sentman J. G. John S. Fujimori S. Fujimori S. Fujimori W. J. Collins |
spellingShingle |
R. J. Allen S. Turnock P. Nabat D. Neubauer U. Lohmann D. Olivié N. Oshima M. Michou T. Wu J. Zhang T. Takemura M. Schulz K. Tsigaridis S. E. Bauer L. Emmons L. Horowitz V. Naik T. van Noije T. Bergman T. Bergman J.-F. Lamarque P. Zanis I. Tegen D. M. Westervelt P. Le Sager P. Good S. Shim F. O'Connor D. Akritidis A. K. Georgoulias M. Deushi L. T. Sentman J. G. John S. Fujimori S. Fujimori S. Fujimori W. J. Collins Climate and air quality impacts due to mitigation of non-methane near-term climate forcers Atmospheric Chemistry and Physics |
author_facet |
R. J. Allen S. Turnock P. Nabat D. Neubauer U. Lohmann D. Olivié N. Oshima M. Michou T. Wu J. Zhang T. Takemura M. Schulz K. Tsigaridis S. E. Bauer L. Emmons L. Horowitz V. Naik T. van Noije T. Bergman T. Bergman J.-F. Lamarque P. Zanis I. Tegen D. M. Westervelt P. Le Sager P. Good S. Shim F. O'Connor D. Akritidis A. K. Georgoulias M. Deushi L. T. Sentman J. G. John S. Fujimori S. Fujimori S. Fujimori W. J. Collins |
author_sort |
R. J. Allen |
title |
Climate and air quality impacts due to mitigation of non-methane near-term climate forcers |
title_short |
Climate and air quality impacts due to mitigation of non-methane near-term climate forcers |
title_full |
Climate and air quality impacts due to mitigation of non-methane near-term climate forcers |
title_fullStr |
Climate and air quality impacts due to mitigation of non-methane near-term climate forcers |
title_full_unstemmed |
Climate and air quality impacts due to mitigation of non-methane near-term climate forcers |
title_sort |
climate and air quality impacts due to mitigation of non-methane near-term climate forcers |
publisher |
Copernicus Publications |
series |
Atmospheric Chemistry and Physics |
issn |
1680-7316 1680-7324 |
publishDate |
2020-08-01 |
description |
<p>It is important to understand how future environmental policies will impact both climate change and air pollution. Although targeting near-term climate forcers (NTCFs), defined here as aerosols, tropospheric ozone, and precursor gases, should improve air quality, NTCF reductions will also impact climate. Prior assessments of the impact of NTCF mitigation on air quality and climate have been limited. This is related to the idealized nature of some prior studies, simplified treatment of aerosols and chemically reactive gases, as well as a lack of a sufficiently large number of models to quantify model diversity and robust responses. Here, we quantify the 2015–2055 climate and air quality effects of non-methane NTCFs using nine state-of-the-art chemistry–climate model simulations conducted for the Aerosol and Chemistry Model Intercomparison Project (AerChemMIP). Simulations are driven by two future scenarios featuring similar increases in greenhouse gases (GHGs) but with “weak” (SSP3-7.0) versus “strong” (SSP3-7.0-lowNTCF) levels of air quality control measures. As SSP3-7.0 lacks climate policy and has the highest levels of NTCFs, our results (e.g., surface warming) represent an upper bound. Unsurprisingly, we find significant improvements in air quality under NTCF mitigation (strong versus weak air quality controls). Surface fine particulate matter (PM<span class="inline-formula"><sub>2.5</sub></span>) and ozone (<span class="inline-formula">O<sub>3</sub></span>) decrease by <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">2.2</mn><mo>±</mo><mn mathvariant="normal">0.32</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="58pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="e7d1e4510ab8d9bb4ca42781032653c5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-9641-2020-ie00001.svg" width="58pt" height="10pt" src="acp-20-9641-2020-ie00001.png"/></svg:svg></span></span> <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">4.6</mn><mo>±</mo><mn mathvariant="normal">0.88</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="58pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="43a101e9a2dd921e24c5cb40f6eb38ea"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-9641-2020-ie00002.svg" width="58pt" height="10pt" src="acp-20-9641-2020-ie00002.png"/></svg:svg></span></span> ppb, respectively (changes quoted here are for the entire 2015–2055 time period; uncertainty represents the 95 % confidence interval), over global land surfaces, with larger reductions in some regions including south and southeast Asia. Non-methane NTCF mitigation, however, leads to additional climate change due to the removal of aerosol which causes a net warming effect, including global mean surface temperature and precipitation increases of <span class="inline-formula">0.25±0.12</span> K and <span class="inline-formula">0.03±0.012</span> mm d<span class="inline-formula"><sup>−1</sup></span>, respectively. Similarly, increases in extreme weather indices, including the hottest and wettest days, also occur. Regionally, the largest warming and wetting occurs over Asia, including central and north Asia (<span class="inline-formula">0.66±0.20</span> K and <span class="inline-formula">0.03±0.02</span> mm d<span class="inline-formula"><sup>−1</sup></span>), south Asia (<span class="inline-formula">0.47±0.16</span> K and <span class="inline-formula">0.17±0.09</span> mm d<span class="inline-formula"><sup>−1</sup></span>), and east Asia (<span class="inline-formula">0.46±0.20</span> K and <span class="inline-formula">0.15±0.06</span> mm d<span class="inline-formula"><sup>−1</sup></span>). Relatively large warming and wetting of the Arctic also occur at <span class="inline-formula">0.59±0.36</span> K and <span class="inline-formula">0.04±0.02</span> mm d<span class="inline-formula"><sup>−1</sup></span>, respectively. Similar surface warming occurs in model simulations with aerosol-only mitigation, implying weak cooling due to ozone reductions. Our findings suggest that future policies that aggressively target non-methane NTCF reductions will improve air quality but will lead to additional surface warming, particularly in Asia and the Arctic. Policies that address other NTCFs including methane, as well as carbon dioxide emissions, must also be adopted to meet climate mitigation goals.</p> |
url |
https://acp.copernicus.org/articles/20/9641/2020/acp-20-9641-2020.pdf |
work_keys_str_mv |
AT rjallen climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers AT sturnock climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers AT pnabat climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers AT dneubauer climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers AT ulohmann climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers AT dolivie climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers AT noshima climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers AT mmichou climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers AT twu climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers AT jzhang climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers AT ttakemura climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers AT mschulz climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers AT ktsigaridis climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers AT sebauer climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers AT lemmons climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers AT lhorowitz climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers AT vnaik climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers AT tvannoije climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers AT tbergman climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers AT tbergman climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers AT jflamarque climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers AT pzanis climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers AT itegen climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers AT dmwestervelt climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers AT plesager climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers AT pgood climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers AT sshim climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers AT foconnor climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers AT dakritidis climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers AT akgeorgoulias climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers AT mdeushi climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers AT ltsentman climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers AT jgjohn climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers AT sfujimori climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers AT sfujimori climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers AT sfujimori climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers AT wjcollins climateandairqualityimpactsduetomitigationofnonmethaneneartermclimateforcers |
_version_ |
1724526477292077056 |
spelling |
doaj-ff28674986174f34b48cc995741758962020-11-25T03:42:13ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242020-08-01209641966310.5194/acp-20-9641-2020Climate and air quality impacts due to mitigation of non-methane near-term climate forcersR. J. Allen0S. Turnock1P. Nabat2D. Neubauer3U. Lohmann4D. Olivié5N. Oshima6M. Michou7T. Wu8J. Zhang9T. Takemura10M. Schulz11K. Tsigaridis12S. E. Bauer13L. Emmons14L. Horowitz15V. Naik16T. van Noije17T. Bergman18T. Bergman19J.-F. Lamarque20P. Zanis21I. Tegen22D. M. Westervelt23P. Le Sager24P. Good25S. Shim26F. O'Connor27D. Akritidis28A. K. Georgoulias29M. Deushi30L. T. Sentman31J. G. John32S. Fujimori33S. Fujimori34S. Fujimori35W. J. Collins36Department of Earth and Planetary Sciences, University of California Riverside, Riverside, CA, USAMet Office Hadley Centre, Exeter, UKCentre National de Recherches Meteorologiques (CNRM), Universite de Toulouse, Météo-France, CNRS, Toulouse, FranceInstitute of Atmospheric and Climate Science, ETH Zurich, Zurich, SwitzerlandInstitute of Atmospheric and Climate Science, ETH Zurich, Zurich, SwitzerlandNorwegian Meteorological Institute, Oslo, NorwayMeteorological Research Institute, Japan Meteorological Agency, Tsukuba, Ibaraki, JapanCentre National de Recherches Meteorologiques (CNRM), Universite de Toulouse, Météo-France, CNRS, Toulouse, FranceClimate System Modeling Division, Beijing Climate Center, China Meteorological Administration, Beijing, ChinaClimate System Modeling Division, Beijing Climate Center, China Meteorological Administration, Beijing, ChinaClimate Change Science Section, Research Institute for Applied Mechanics, Kyushu University, Fukuoka, JapanNorwegian Meteorological Institute, Oslo, NorwayCenter for Climate Systems Research, Columbia University, NASA Goddard Institute for Space Studies, New York, NY, USACenter for Climate Systems Research, Columbia University, NASA Goddard Institute for Space Studies, New York, NY, USAAtmospheric Chemistry Observations and Modelling Lab, National Center for Atmospheric Research, Boulder, CO, USADOC/NOAA/OAR/Geophysical Fluid Dynamics Laboratory, Biogeochemistry, Atmospheric Chemistry, and Ecology Division, Princeton, NJ, USADOC/NOAA/OAR/Geophysical Fluid Dynamics Laboratory, Biogeochemistry, Atmospheric Chemistry, and Ecology Division, Princeton, NJ, USARoyal Netherlands Meteorological Institute, De Bilt, NetherlandsRoyal Netherlands Meteorological Institute, De Bilt, NetherlandsFinnish Meteorological Institute, Helsinki, FinlandNCAR/UCAR, Boulder, CO, USADepartment of Meteorology and Climatology, School of Geology, Aristotle University of Thessaloniki, Thessaloniki, GreeceLeibniz Institute for Tropospheric Research, Leipzig, GermanyLamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USARoyal Netherlands Meteorological Institute, De Bilt, NetherlandsMet Office Hadley Centre, Exeter, UKNational Institute of Meteorological Sciences, Seogwipo-si, Jeju-do, South KoreaMet Office Hadley Centre, Exeter, UKDepartment of Meteorology and Climatology, School of Geology, Aristotle University of Thessaloniki, Thessaloniki, GreeceDepartment of Meteorology and Climatology, School of Geology, Aristotle University of Thessaloniki, Thessaloniki, GreeceMeteorological Research Institute, Japan Meteorological Agency, Tsukuba, Ibaraki, JapanDOC/NOAA/OAR/Geophysical Fluid Dynamics Laboratory, Biogeochemistry, Atmospheric Chemistry, and Ecology Division, Princeton, NJ, USADOC/NOAA/OAR/Geophysical Fluid Dynamics Laboratory, Biogeochemistry, Atmospheric Chemistry, and Ecology Division, Princeton, NJ, USADepartment of Environmental Engineering, Kyoto University, C1-3 361, Kyotodaigaku Katsura, Nishikyoku, Kyoto, JapanCenter for Social and Environmental Systems Research, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki, JapanInternational Institute for Applied System Analysis (IIASA), Schlossplatz 1, Laxenburg, AustriaDepartment of Meteorology, University of Reading, Reading, UK<p>It is important to understand how future environmental policies will impact both climate change and air pollution. Although targeting near-term climate forcers (NTCFs), defined here as aerosols, tropospheric ozone, and precursor gases, should improve air quality, NTCF reductions will also impact climate. Prior assessments of the impact of NTCF mitigation on air quality and climate have been limited. This is related to the idealized nature of some prior studies, simplified treatment of aerosols and chemically reactive gases, as well as a lack of a sufficiently large number of models to quantify model diversity and robust responses. Here, we quantify the 2015–2055 climate and air quality effects of non-methane NTCFs using nine state-of-the-art chemistry–climate model simulations conducted for the Aerosol and Chemistry Model Intercomparison Project (AerChemMIP). Simulations are driven by two future scenarios featuring similar increases in greenhouse gases (GHGs) but with “weak” (SSP3-7.0) versus “strong” (SSP3-7.0-lowNTCF) levels of air quality control measures. As SSP3-7.0 lacks climate policy and has the highest levels of NTCFs, our results (e.g., surface warming) represent an upper bound. Unsurprisingly, we find significant improvements in air quality under NTCF mitigation (strong versus weak air quality controls). Surface fine particulate matter (PM<span class="inline-formula"><sub>2.5</sub></span>) and ozone (<span class="inline-formula">O<sub>3</sub></span>) decrease by <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">2.2</mn><mo>±</mo><mn mathvariant="normal">0.32</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="58pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="e7d1e4510ab8d9bb4ca42781032653c5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-9641-2020-ie00001.svg" width="58pt" height="10pt" src="acp-20-9641-2020-ie00001.png"/></svg:svg></span></span> <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">4.6</mn><mo>±</mo><mn mathvariant="normal">0.88</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="58pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="43a101e9a2dd921e24c5cb40f6eb38ea"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-9641-2020-ie00002.svg" width="58pt" height="10pt" src="acp-20-9641-2020-ie00002.png"/></svg:svg></span></span> ppb, respectively (changes quoted here are for the entire 2015–2055 time period; uncertainty represents the 95 % confidence interval), over global land surfaces, with larger reductions in some regions including south and southeast Asia. Non-methane NTCF mitigation, however, leads to additional climate change due to the removal of aerosol which causes a net warming effect, including global mean surface temperature and precipitation increases of <span class="inline-formula">0.25±0.12</span> K and <span class="inline-formula">0.03±0.012</span> mm d<span class="inline-formula"><sup>−1</sup></span>, respectively. Similarly, increases in extreme weather indices, including the hottest and wettest days, also occur. Regionally, the largest warming and wetting occurs over Asia, including central and north Asia (<span class="inline-formula">0.66±0.20</span> K and <span class="inline-formula">0.03±0.02</span> mm d<span class="inline-formula"><sup>−1</sup></span>), south Asia (<span class="inline-formula">0.47±0.16</span> K and <span class="inline-formula">0.17±0.09</span> mm d<span class="inline-formula"><sup>−1</sup></span>), and east Asia (<span class="inline-formula">0.46±0.20</span> K and <span class="inline-formula">0.15±0.06</span> mm d<span class="inline-formula"><sup>−1</sup></span>). Relatively large warming and wetting of the Arctic also occur at <span class="inline-formula">0.59±0.36</span> K and <span class="inline-formula">0.04±0.02</span> mm d<span class="inline-formula"><sup>−1</sup></span>, respectively. Similar surface warming occurs in model simulations with aerosol-only mitigation, implying weak cooling due to ozone reductions. Our findings suggest that future policies that aggressively target non-methane NTCF reductions will improve air quality but will lead to additional surface warming, particularly in Asia and the Arctic. Policies that address other NTCFs including methane, as well as carbon dioxide emissions, must also be adopted to meet climate mitigation goals.</p>https://acp.copernicus.org/articles/20/9641/2020/acp-20-9641-2020.pdf |