Characterization of PAHs Trapped in the Soot from the Combustion of Various Mediterranean Species
Climate change causes more frequent and destructive wildfires even transforming them into megafire. Moreover, all biomass fires produce emissions of carbon compounds in the form of soot to the atmosphere with a significant impact on the environment and human health. Indeed, the soot is causing the f...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-07-01
|
Series: | Atmosphere |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-4433/12/8/965 |
Summary: | Climate change causes more frequent and destructive wildfires even transforming them into megafire. Moreover, all biomass fires produce emissions of carbon compounds in the form of soot to the atmosphere with a significant impact on the environment and human health. Indeed, the soot is causing the formation of PAHs from (a) the high temperature thermal alteration of natural product precursors in the source organic matter and (b) the recombination of molecular fragments in the smoke. However, these molecules are known to have carcinogenic effects on human health. It is therefore interesting to quantify the 16 PAHs concentration extracted from soot emitted in open diffusion flame of biomass combustion. To achieve this objective, an analytical method developed for the study of kerosene combustion has been adapted for soot from biomass. This new method allowed to quantify the 16 PAHs defined as priority pollutants by the US EPA for their carcinogenic mutagenic effect and on human health. |
---|---|
ISSN: | 2073-4433 |