Status epilepticus affects the gigantocellular network of the pontine reticular formation

<p>Abstract</p> <p>Background</p> <p>The impairment of the pontine reticular formation (PRF) has recently been revealed to be histopathologically connected with focal-cortical seizure induced generalized convulsive <it>status epilepticus</it>. To elucidate w...

Full description

Bibliographic Details
Main Authors: Kékesi Katalin A, Kiglics Viola, Baracskay Péter, Juhász Gábor, Czurkó András
Format: Article
Language:English
Published: BMC 2009-11-01
Series:BMC Neuroscience
Online Access:http://www.biomedcentral.com/1471-2202/10/133
Description
Summary:<p>Abstract</p> <p>Background</p> <p>The impairment of the pontine reticular formation (PRF) has recently been revealed to be histopathologically connected with focal-cortical seizure induced generalized convulsive <it>status epilepticus</it>. To elucidate whether the impairment of the PRF is a general phenomenon during <it>status epilepticus</it>, the focal-cortical 4-aminopyridine (4-AP) application was compared with other epilepsy models. The presence of "dark" neurons in the PRF was investigated by the sensitive silver method of Gallyas in rats sacrificed at 3 h after focal 4-AP crystal or systemic 4-AP, pilocarpine, or kainic acid application. The behavioral signs of the developing epileptic seizures were scored in all rats. The EEG activity was recorded in eight rats.</p> <p>Results</p> <p>Regardless of the initiating drug or method of administration, "dark" neurons were consistently found in the PRF of animals entered the later phases of <it>status epilepticus</it>. EEG recordings demonstrated the presence of slow oscillations (1.5-2.5 Hz) simultaneously with the appearance of giant "dark" neurons in the PRF.</p> <p>Conclusion</p> <p>We argue that the observed slow oscillation corresponds to the late periodic epileptiform discharge phase of <it>status epilepticus</it>, and that the PRF may be involved in the progression of <it>status epilepticus</it>.</p>
ISSN:1471-2202