Quantitative Estimating Salt Content of Saline Soil Using Laboratory Hyperspectral Data Treated by Fractional Derivative

Most present researches on estimation of soil salinity by hyperspectral data have focused on the spectral reflectance or their integer derivatives but ignored the fractional derivative information of hyperspectral data. Motivated by this situation, the selected study area is the Ebinur Lake basin lo...

Full description

Bibliographic Details
Main Authors: Dong Zhang, Tashpolat Tiyip, Jianli Ding, Fei Zhang, Ilyas Nurmemet, Ardak Kelimu, Jingzhe Wang
Format: Article
Language:English
Published: Hindawi Limited 2016-01-01
Series:Journal of Spectroscopy
Online Access:http://dx.doi.org/10.1155/2016/1081674
Description
Summary:Most present researches on estimation of soil salinity by hyperspectral data have focused on the spectral reflectance or their integer derivatives but ignored the fractional derivative information of hyperspectral data. Motivated by this situation, the selected study area is the Ebinur Lake basin located in the southwest border in the Xinjiang Uygur Autonomous Region, China, with severe salinization. The field work was conducted from 15 to 25 October, 2014, and a total of 180 soil samples were collected from 45 sampling sites; after measuring the soil salt content and spectral reflectance in the laboratory, the range from 0 to 2 was divided into 11 orders (interval 0.2) and then the hyperspectral data were treated by 4 kinds of mathematical transformations and 11 orders of fractional derivatives. Combined with the soil salt content, partial least square regression method was applied for model calibrations and predictions and some indexes were used to evaluate the performance of models. The results showed that the retrieval model built up by 250 bands based on 1.2-order derivative of 1/lg⁡R had excellent capacity of estimating soil salt content in the study area (RMSEC=14.685 g/kg, RMSEP=14.713 g/kg, R2C=0.782, R2P=0.768, and RPD = 2.080). This study provides an application reference for quantitative estimations of other land surface parameters and some other applications on hyperspectral technology.
ISSN:2314-4920
2314-4939