Summary: | <p>Abstract</p> <p>Background</p> <p>Vitamin C is a cofactor in the biosynthesis of carnitine, a molecule required for the oxidation of fatty acids. A reduction in the ability to oxidize fat may contribute to the reported inverse relationship between vitamin C status and adiposity. To examine this possibility, we conducted a preliminary trial to evaluate the impact of vitamin C status on fat oxidation during submaximal exercise.</p> <p>Methods</p> <p>Fat energy expenditure was determined in individuals with marginal (n = 15) or adequate (n = 7) vitamin C status during a submaximal, 60-minute treadmill test. Subsequently, eight of the subjects with marginal vitamin C status completed an 8-week double-blind, placebo-controlled, depletion-repletion trial with submaximal exercise testing.</p> <p>Results</p> <p>Individuals with marginal vitamin C status oxidized 25% less fat per kg body weight during the treadmill test as compared to individuals with adequate vitamin C status. Fat oxidation during exercise was inversely related to fatigue (r = -0.611, p = 0.009). Vitamin C repletion of vitamin C depleted subjects (500 mg vitamin C/d) raised fat energy expenditure during exercise 4-fold as compared to depleted control subjects (p = 0.011).</p> <p>Conclusion</p> <p>These preliminary results show that low vitamin C status is associated with reduced fat oxidation during submaximal exercise. Low vitamin C status may partially explain the inverse relationship between vitamin C status and adiposity and why some individuals are unsuccessful in their weight loss attempts.</p>
|