Anisotropic finite-size scaling of an elastic string at the depinning threshold in a random-periodic medium

<p>We&nbsp;numerically&nbsp;study the geometry of a driven elastic string at its sample-dependent depinning threshold in random-periodic media. We find that the anisotropic finite-size scaling of the average square width $overline{w^2}$ and of its associated probability distribution ar...

Full description

Bibliographic Details
Main Authors: Sebastián Bustingorry, Alejandro B. Kolton
Format: Article
Language:English
Published: Papers in Physics 2010-02-01
Series:Papers in Physics
Subjects:
Online Access:http://www.papersinphysics.org/index.php/papersinphysics/article/view/44/pdf44
id doaj-fef318d9ce51441bb604e3eba4f1561a
record_format Article
spelling doaj-fef318d9ce51441bb604e3eba4f1561a2020-11-24T21:06:56ZengPapers in PhysicsPapers in Physics1852-42492010-02-012002000810.4279/pip.020008Anisotropic finite-size scaling of an elastic string at the depinning threshold in a random-periodic mediumSebastián BustingorryAlejandro B. Kolton<p>We&nbsp;numerically&nbsp;study the geometry of a driven elastic string at its sample-dependent depinning threshold in random-periodic media. We find that the anisotropic finite-size scaling of the average square width $overline{w^2}$ and of its associated probability distribution are both controlled by the ratio $k=M/L^{zeta_{dep}}$, where $zeta_{dep}$ is the random-manifold depinning roughness exponent, $L$ is the longitudinal size of the string and $M$ the transverse periodicity of the random medium. The rescaled average square width $overline{w^2}/L^{2zeta_{dep}}$ displays a non-trivial single minimum for a finite value of $k$. We show that the initial decrease for small $k$ reflects the crossover at $k sim 1$ from the random-periodic to the random-manifold roughness. The increase for very large $k$ implies that the increasingly rare critical configurations, accompanying the crossover to Gumbel critical-force statistics, display anomalous roughness properties: a transverse-periodicity scaling in spite that $overline{w^2} ll M$, and subleading corrections to the standard random-manifold longitudinal-size scaling. Our results are relevant tounderstanding the dimensional crossover from interface to particle depinning.</p><p>&nbsp;</p><p><strong>Received:</strong> 20 October 2010,&nbsp;<strong></strong><strong>Accepted:</strong> 1 December 2010; <strong>Edited by:</strong>&nbsp; A. Vindigni; <strong>Reviewed by:</strong> A. A. Fedorenko, CNRS-Lab. de Physique, ENS de Lyon, France; <strong>DOI:</strong> 10.4279/PIP.020008</p> http://www.papersinphysics.org/index.php/papersinphysics/article/view/44/pdf44Depinning TransitionDisordered Elastic Systems
collection DOAJ
language English
format Article
sources DOAJ
author Sebastián Bustingorry
Alejandro B. Kolton
spellingShingle Sebastián Bustingorry
Alejandro B. Kolton
Anisotropic finite-size scaling of an elastic string at the depinning threshold in a random-periodic medium
Papers in Physics
Depinning Transition
Disordered Elastic Systems
author_facet Sebastián Bustingorry
Alejandro B. Kolton
author_sort Sebastián Bustingorry
title Anisotropic finite-size scaling of an elastic string at the depinning threshold in a random-periodic medium
title_short Anisotropic finite-size scaling of an elastic string at the depinning threshold in a random-periodic medium
title_full Anisotropic finite-size scaling of an elastic string at the depinning threshold in a random-periodic medium
title_fullStr Anisotropic finite-size scaling of an elastic string at the depinning threshold in a random-periodic medium
title_full_unstemmed Anisotropic finite-size scaling of an elastic string at the depinning threshold in a random-periodic medium
title_sort anisotropic finite-size scaling of an elastic string at the depinning threshold in a random-periodic medium
publisher Papers in Physics
series Papers in Physics
issn 1852-4249
publishDate 2010-02-01
description <p>We&nbsp;numerically&nbsp;study the geometry of a driven elastic string at its sample-dependent depinning threshold in random-periodic media. We find that the anisotropic finite-size scaling of the average square width $overline{w^2}$ and of its associated probability distribution are both controlled by the ratio $k=M/L^{zeta_{dep}}$, where $zeta_{dep}$ is the random-manifold depinning roughness exponent, $L$ is the longitudinal size of the string and $M$ the transverse periodicity of the random medium. The rescaled average square width $overline{w^2}/L^{2zeta_{dep}}$ displays a non-trivial single minimum for a finite value of $k$. We show that the initial decrease for small $k$ reflects the crossover at $k sim 1$ from the random-periodic to the random-manifold roughness. The increase for very large $k$ implies that the increasingly rare critical configurations, accompanying the crossover to Gumbel critical-force statistics, display anomalous roughness properties: a transverse-periodicity scaling in spite that $overline{w^2} ll M$, and subleading corrections to the standard random-manifold longitudinal-size scaling. Our results are relevant tounderstanding the dimensional crossover from interface to particle depinning.</p><p>&nbsp;</p><p><strong>Received:</strong> 20 October 2010,&nbsp;<strong></strong><strong>Accepted:</strong> 1 December 2010; <strong>Edited by:</strong>&nbsp; A. Vindigni; <strong>Reviewed by:</strong> A. A. Fedorenko, CNRS-Lab. de Physique, ENS de Lyon, France; <strong>DOI:</strong> 10.4279/PIP.020008</p>
topic Depinning Transition
Disordered Elastic Systems
url http://www.papersinphysics.org/index.php/papersinphysics/article/view/44/pdf44
work_keys_str_mv AT sebastianbustingorry anisotropicfinitesizescalingofanelasticstringatthedepinningthresholdinarandomperiodicmedium
AT alejandrobkolton anisotropicfinitesizescalingofanelasticstringatthedepinningthresholdinarandomperiodicmedium
_version_ 1716764250368638976