Anisotropic finite-size scaling of an elastic string at the depinning threshold in a random-periodic medium
<p>We numerically study the geometry of a driven elastic string at its sample-dependent depinning threshold in random-periodic media. We find that the anisotropic finite-size scaling of the average square width $overline{w^2}$ and of its associated probability distribution ar...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Papers in Physics
2010-02-01
|
Series: | Papers in Physics |
Subjects: | |
Online Access: | http://www.papersinphysics.org/index.php/papersinphysics/article/view/44/pdf44 |
id |
doaj-fef318d9ce51441bb604e3eba4f1561a |
---|---|
record_format |
Article |
spelling |
doaj-fef318d9ce51441bb604e3eba4f1561a2020-11-24T21:06:56ZengPapers in PhysicsPapers in Physics1852-42492010-02-012002000810.4279/pip.020008Anisotropic finite-size scaling of an elastic string at the depinning threshold in a random-periodic mediumSebastián BustingorryAlejandro B. Kolton<p>We numerically study the geometry of a driven elastic string at its sample-dependent depinning threshold in random-periodic media. We find that the anisotropic finite-size scaling of the average square width $overline{w^2}$ and of its associated probability distribution are both controlled by the ratio $k=M/L^{zeta_{dep}}$, where $zeta_{dep}$ is the random-manifold depinning roughness exponent, $L$ is the longitudinal size of the string and $M$ the transverse periodicity of the random medium. The rescaled average square width $overline{w^2}/L^{2zeta_{dep}}$ displays a non-trivial single minimum for a finite value of $k$. We show that the initial decrease for small $k$ reflects the crossover at $k sim 1$ from the random-periodic to the random-manifold roughness. The increase for very large $k$ implies that the increasingly rare critical configurations, accompanying the crossover to Gumbel critical-force statistics, display anomalous roughness properties: a transverse-periodicity scaling in spite that $overline{w^2} ll M$, and subleading corrections to the standard random-manifold longitudinal-size scaling. Our results are relevant tounderstanding the dimensional crossover from interface to particle depinning.</p><p> </p><p><strong>Received:</strong> 20 October 2010, <strong></strong><strong>Accepted:</strong> 1 December 2010; <strong>Edited by:</strong> A. Vindigni; <strong>Reviewed by:</strong> A. A. Fedorenko, CNRS-Lab. de Physique, ENS de Lyon, France; <strong>DOI:</strong> 10.4279/PIP.020008</p> http://www.papersinphysics.org/index.php/papersinphysics/article/view/44/pdf44Depinning TransitionDisordered Elastic Systems |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Sebastián Bustingorry Alejandro B. Kolton |
spellingShingle |
Sebastián Bustingorry Alejandro B. Kolton Anisotropic finite-size scaling of an elastic string at the depinning threshold in a random-periodic medium Papers in Physics Depinning Transition Disordered Elastic Systems |
author_facet |
Sebastián Bustingorry Alejandro B. Kolton |
author_sort |
Sebastián Bustingorry |
title |
Anisotropic finite-size scaling of an elastic string at the depinning threshold in a random-periodic medium |
title_short |
Anisotropic finite-size scaling of an elastic string at the depinning threshold in a random-periodic medium |
title_full |
Anisotropic finite-size scaling of an elastic string at the depinning threshold in a random-periodic medium |
title_fullStr |
Anisotropic finite-size scaling of an elastic string at the depinning threshold in a random-periodic medium |
title_full_unstemmed |
Anisotropic finite-size scaling of an elastic string at the depinning threshold in a random-periodic medium |
title_sort |
anisotropic finite-size scaling of an elastic string at the depinning threshold in a random-periodic medium |
publisher |
Papers in Physics |
series |
Papers in Physics |
issn |
1852-4249 |
publishDate |
2010-02-01 |
description |
<p>We numerically study the geometry of a driven elastic string at its sample-dependent depinning threshold in random-periodic media. We find that the anisotropic finite-size scaling of the average square width $overline{w^2}$ and of its associated probability distribution are both controlled by the ratio $k=M/L^{zeta_{dep}}$, where $zeta_{dep}$ is the random-manifold depinning roughness exponent, $L$ is the longitudinal size of the string and $M$ the transverse periodicity of the random medium. The rescaled average square width $overline{w^2}/L^{2zeta_{dep}}$ displays a non-trivial single minimum for a finite value of $k$. We show that the initial decrease for small $k$ reflects the crossover at $k sim 1$ from the random-periodic to the random-manifold roughness. The increase for very large $k$ implies that the increasingly rare critical configurations, accompanying the crossover to Gumbel critical-force statistics, display anomalous roughness properties: a transverse-periodicity scaling in spite that $overline{w^2} ll M$, and subleading corrections to the standard random-manifold longitudinal-size scaling. Our results are relevant tounderstanding the dimensional crossover from interface to particle depinning.</p><p> </p><p><strong>Received:</strong> 20 October 2010, <strong></strong><strong>Accepted:</strong> 1 December 2010; <strong>Edited by:</strong> A. Vindigni; <strong>Reviewed by:</strong> A. A. Fedorenko, CNRS-Lab. de Physique, ENS de Lyon, France; <strong>DOI:</strong> 10.4279/PIP.020008</p> |
topic |
Depinning Transition Disordered Elastic Systems |
url |
http://www.papersinphysics.org/index.php/papersinphysics/article/view/44/pdf44 |
work_keys_str_mv |
AT sebastianbustingorry anisotropicfinitesizescalingofanelasticstringatthedepinningthresholdinarandomperiodicmedium AT alejandrobkolton anisotropicfinitesizescalingofanelasticstringatthedepinningthresholdinarandomperiodicmedium |
_version_ |
1716764250368638976 |