Summary: | The image restoration methods based on the Bayesian's framework and Markov random fields (MRF) have been widely used in the image-processing field. The basic idea of all these methods is to use calculus of variation and mathematical statistics to average or estimate a pixel value by the values of its neighbors. After applying this averaging process to the whole image a number of times, the noisy pixels, which are abnormal values, are filtered out. Based on the Tea-trade model, which states that the closer the neighbor, more contribution it makes, almost all of these methods use only the nearest four neighbors for calculation. In our previous research [1, 2], we extended the research on CLRS (image restoration and segmentation by using competitive learning) algorithm to enlarge the neighborhood size. The results showed that the longer neighborhood range could improve or worsen the restoration results. We also found that the autocorrelation coefficient was an important factor to determine the proper neighborhood size. We then further realized that the computational complexity increased dramatically along with the enlargement of the neighborhood size. This paper is to further the previous research and to discuss the tradeoff between the computational complexity and the restoration improvement by using longer neighborhood range. We used a couple of methods to construct the synthetic images with the exact correlation coefficients we want and to determine the corresponding neighborhood size. We constructed an image with a range of correlation coefficients by blending some synthetic images. Then an adaptive method to find the correlation coefficients of this image was constructed. We restored the image by applying different neighborhood CLRS algorithm to different parts of the image according to its correlation coefficient. Finally, we applied this adaptive method to some real-world images to get improved restoration results than by using single neighborhood size. This method can be extended virtually on all the methods based on MRF framework and result in improved algorithms.
|