Hemicastration induced spermatogenesis-related DNA methylation and gene expression changes in mice testis

Objective Hemicastration is a unilateral orchiectomy to remove an injured testis, which can induce hormonal changes and compensatory hypertrophy of the remaining testis, and may influence spermatogenesis. However, the underlying molecular mechanisms are poorly understood. Here, we investigated the i...

Full description

Bibliographic Details
Main Authors: Yixin Wang, Long Jin, Jideng Ma, Li Chen, Yuhua Fu, Keren Long, Silu Hu, Yang Song, Dazhi Shang, Qianzi Tang, Xun Wang, Xuewei Li, Mingzhou Li
Format: Article
Language:English
Published: Asian-Australasian Association of Animal Production Societies 2018-02-01
Series:Asian-Australasian Journal of Animal Sciences
Subjects:
Online Access:http://www.ajas.info/upload/pdf/ajas-31-2-189.pdf
Description
Summary:Objective Hemicastration is a unilateral orchiectomy to remove an injured testis, which can induce hormonal changes and compensatory hypertrophy of the remaining testis, and may influence spermatogenesis. However, the underlying molecular mechanisms are poorly understood. Here, we investigated the impact of hemicastration on remaining testicular function. Methods Prepubertal mice (age 24 days) were hemicastrated, and their growth was monitored until they reached physical maturity (age 72 days). Subsequently, we determined testis DNA methylation patterns using reduced representation bisulfite sequencing of normal and hemicastrated mice. Moreover, we profiled the testicular gene expression patterns by RNA sequencing (RNA-seq) to examine whether methylation changes affected gene expression in hemicastrated mice. Results Hemicastration did not significantly affect growth or testosterone (p>0.05) compared with control. The genome-wide DNA methylation pattern of remaining testis suggested that substantial genes harbored differentially methylated regions (1,139) in gene bodies, which were enriched in process of protein binding and cell adhesion. Moreover, RNA-seq results indicated that 46 differentially expressed genes (DEGs) involved in meiotic cell cycle, synaptonemal complex assembly and spermatogenesis were upregulated in the hemicastration group, while 197 DEGs were downregulated, which were related to arachidonic acid metabolism. Integrative analysis revealed that proteasome 26S subunit ATPase 3 interacting protein gene, which encodes a protein crucial for homologous recombination in spermatocytes, exhibited promoter hypomethylation and higher expression level in hemicastrated mice. Conclusion Global profiling of DNA methylation and gene expression demonstrated that hemicastration-induced compensatory response maintained normal growth and testicular morphological structure in mice.
ISSN:1011-2367
1976-5517