Uptake of a Consumer-Focused mHealth Application for the Assessment and Prevention of Heart Disease: The <30 Days Study

BackgroundLifestyle behavior modification can reduce the risk of cardiovascular disease, one of the leading causes of death worldwide, by up to 80%. We hypothesized that a dynamic risk assessment and behavior change tool delivered as a mobile app, hosted by a reputable nonpro...

Full description

Bibliographic Details
Main Authors: Goyal, Shivani, Morita, Plinio P, Picton, Peter, Seto, Emily, Zbib, Ahmad, Cafazzo, Joseph A
Format: Article
Language:English
Published: JMIR Publications 2016-03-01
Series:JMIR mHealth and uHealth
Online Access:http://mhealth.jmir.org/2016/1/e32/
Description
Summary:BackgroundLifestyle behavior modification can reduce the risk of cardiovascular disease, one of the leading causes of death worldwide, by up to 80%. We hypothesized that a dynamic risk assessment and behavior change tool delivered as a mobile app, hosted by a reputable nonprofit organization, would promote uptake among community members. We also predicted that the uptake would be influenced by incentives offered for downloading the mobile app. ObjectiveThe primary objective of our study was to evaluate the engagement levels of participants using the novel risk management app. The secondary aim was to assess the effect of incentives on the overall uptake and usage behaviors. MethodsWe publicly launched the app through the iTunes App Store and collected usage data over 5 months. Aggregate information included population-level data on download rates, use, risk factors, and user demographics. We used descriptive statistics to identify usage patterns, t tests, and analysis of variance to compare group means. Correlation and regression analyses determined the relationship between usage and demographic variables. ResultsWe captured detailed mobile usage data from 69,952 users over a 5-month period, of whom 23,727 (33.92%) were registered during a 1-month AIR MILES promotion. Of those who completed the risk assessment, 73.92% (42,380/57,330) were female, and 59.38% (34,042/57,330) were <30 years old. While the older demographic had significantly lower uptake than the younger demographic, with only 8.97% of users aged ≥51 years old downloading the app, the older demographic completed more challenges than their younger counterparts (F8, 52,422 = 55.10, P<.001). In terms of engagement levels, 84.94% (44,537/52,431) of users completed 1–14 challenges over a 30-day period, and 10.03% (5,259/52,431) of users completed >22 challenges. On average, users in the incentives group completed slightly more challenges during the first 30 days of the intervention (mean 7.9, SD 0.13) than those in the nonincentives group (mean 6.1, SD 0.06, t28870=–12.293, P<.001, d=0.12, 95% CI –2.02 to –1.47). The regression analysis suggested that sex, age group, ethnicity, having 5 of the risk factors (all but alcohol), incentives, and the number of family histories were predictors of the number of challenges completed by a user (F14, 56,538 = 86.644, P<.001, adjusted R2 = .021). ConclusionWhile the younger population downloaded the app the most, the older population demonstrated greater sustained engagement. Behavior change apps have the potential to reach a targeted population previously thought to be uninterested in or unable to use mobile apps. The development of such apps should assume that older adults will in fact engage if the behavior change elements are suitably designed, integrated into daily routines, and tailored. Incentives may be the stepping-stone that is needed to guide the general population toward preventative tools and promote sustained behavior change.
ISSN:2291-5222