Explicit exponential decay bounds in quasilinear parabolic problems

<p/> <p>This paper deals with classical solutions <inline-formula><graphic file="1029-242X-1999-152404-i1.gif"/></inline-formula> of some initial boundary value problems involving the quasilinear parabolic equation <inline-formula><graphic file="...

Full description

Bibliographic Details
Main Authors: Piro S Vernier, Philippin GA
Format: Article
Language:English
Published: SpringerOpen 1999-01-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://www.journalofinequalitiesandapplications.com/content/3/152404
id doaj-fe8f22e583944f5fbeab5320919ab3d7
record_format Article
spelling doaj-fe8f22e583944f5fbeab5320919ab3d72020-11-25T01:01:00ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X1999-01-0119991152404Explicit exponential decay bounds in quasilinear parabolic problemsPiro S VernierPhilippin GA<p/> <p>This paper deals with classical solutions <inline-formula><graphic file="1029-242X-1999-152404-i1.gif"/></inline-formula> of some initial boundary value problems involving the quasilinear parabolic equation <inline-formula><graphic file="1029-242X-1999-152404-i2.gif"/></inline-formula> where <inline-formula><graphic file="1029-242X-1999-152404-i3.gif"/></inline-formula> are given functions. In the case of one space variable, i.e. when <inline-formula><graphic file="1029-242X-1999-152404-i4.gif"/></inline-formula>, we establish a maximum principle for the auxiliary function <inline-formula><graphic file="1029-242X-1999-152404-i5.gif"/></inline-formula> where a is an arbitrary nonnegative parameter. In some cases this maximum principle may be used to derive explicit exponential decay bounds for <inline-formula><graphic file="1029-242X-1999-152404-i6.gif"/></inline-formula> and <inline-formula><graphic file="1029-242X-1999-152404-i7.gif"/></inline-formula>. Some extensions in <inline-formula><graphic file="1029-242X-1999-152404-i8.gif"/></inline-formula> space dimensions are indicated. This work may be considered as a continuation of previous works by Payne and Philippin (<it>Mathematical Models and Methods in Applied Sciences</it>, 5 (1995), 95&#8211;110; Decay bounds in quasilinear parabolic problems, In: <it>Nonlinear Problems in Applied Mathematics</it>, Ed. by T.S. Angell, L. Pamela, Cook, R.E., SIAM, 1997).</p>http://www.journalofinequalitiesandapplications.com/content/3/152404Maximum principles for quasilinear parabolic equations
collection DOAJ
language English
format Article
sources DOAJ
author Piro S Vernier
Philippin GA
spellingShingle Piro S Vernier
Philippin GA
Explicit exponential decay bounds in quasilinear parabolic problems
Journal of Inequalities and Applications
Maximum principles for quasilinear parabolic equations
author_facet Piro S Vernier
Philippin GA
author_sort Piro S Vernier
title Explicit exponential decay bounds in quasilinear parabolic problems
title_short Explicit exponential decay bounds in quasilinear parabolic problems
title_full Explicit exponential decay bounds in quasilinear parabolic problems
title_fullStr Explicit exponential decay bounds in quasilinear parabolic problems
title_full_unstemmed Explicit exponential decay bounds in quasilinear parabolic problems
title_sort explicit exponential decay bounds in quasilinear parabolic problems
publisher SpringerOpen
series Journal of Inequalities and Applications
issn 1025-5834
1029-242X
publishDate 1999-01-01
description <p/> <p>This paper deals with classical solutions <inline-formula><graphic file="1029-242X-1999-152404-i1.gif"/></inline-formula> of some initial boundary value problems involving the quasilinear parabolic equation <inline-formula><graphic file="1029-242X-1999-152404-i2.gif"/></inline-formula> where <inline-formula><graphic file="1029-242X-1999-152404-i3.gif"/></inline-formula> are given functions. In the case of one space variable, i.e. when <inline-formula><graphic file="1029-242X-1999-152404-i4.gif"/></inline-formula>, we establish a maximum principle for the auxiliary function <inline-formula><graphic file="1029-242X-1999-152404-i5.gif"/></inline-formula> where a is an arbitrary nonnegative parameter. In some cases this maximum principle may be used to derive explicit exponential decay bounds for <inline-formula><graphic file="1029-242X-1999-152404-i6.gif"/></inline-formula> and <inline-formula><graphic file="1029-242X-1999-152404-i7.gif"/></inline-formula>. Some extensions in <inline-formula><graphic file="1029-242X-1999-152404-i8.gif"/></inline-formula> space dimensions are indicated. This work may be considered as a continuation of previous works by Payne and Philippin (<it>Mathematical Models and Methods in Applied Sciences</it>, 5 (1995), 95&#8211;110; Decay bounds in quasilinear parabolic problems, In: <it>Nonlinear Problems in Applied Mathematics</it>, Ed. by T.S. Angell, L. Pamela, Cook, R.E., SIAM, 1997).</p>
topic Maximum principles for quasilinear parabolic equations
url http://www.journalofinequalitiesandapplications.com/content/3/152404
work_keys_str_mv AT pirosvernier explicitexponentialdecayboundsinquasilinearparabolicproblems
AT philippinga explicitexponentialdecayboundsinquasilinearparabolicproblems
_version_ 1725211367454015488