Explicit exponential decay bounds in quasilinear parabolic problems
<p/> <p>This paper deals with classical solutions <inline-formula><graphic file="1029-242X-1999-152404-i1.gif"/></inline-formula> of some initial boundary value problems involving the quasilinear parabolic equation <inline-formula><graphic file="...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
1999-01-01
|
Series: | Journal of Inequalities and Applications |
Subjects: | |
Online Access: | http://www.journalofinequalitiesandapplications.com/content/3/152404 |
id |
doaj-fe8f22e583944f5fbeab5320919ab3d7 |
---|---|
record_format |
Article |
spelling |
doaj-fe8f22e583944f5fbeab5320919ab3d72020-11-25T01:01:00ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X1999-01-0119991152404Explicit exponential decay bounds in quasilinear parabolic problemsPiro S VernierPhilippin GA<p/> <p>This paper deals with classical solutions <inline-formula><graphic file="1029-242X-1999-152404-i1.gif"/></inline-formula> of some initial boundary value problems involving the quasilinear parabolic equation <inline-formula><graphic file="1029-242X-1999-152404-i2.gif"/></inline-formula> where <inline-formula><graphic file="1029-242X-1999-152404-i3.gif"/></inline-formula> are given functions. In the case of one space variable, i.e. when <inline-formula><graphic file="1029-242X-1999-152404-i4.gif"/></inline-formula>, we establish a maximum principle for the auxiliary function <inline-formula><graphic file="1029-242X-1999-152404-i5.gif"/></inline-formula> where a is an arbitrary nonnegative parameter. In some cases this maximum principle may be used to derive explicit exponential decay bounds for <inline-formula><graphic file="1029-242X-1999-152404-i6.gif"/></inline-formula> and <inline-formula><graphic file="1029-242X-1999-152404-i7.gif"/></inline-formula>. Some extensions in <inline-formula><graphic file="1029-242X-1999-152404-i8.gif"/></inline-formula> space dimensions are indicated. This work may be considered as a continuation of previous works by Payne and Philippin (<it>Mathematical Models and Methods in Applied Sciences</it>, 5 (1995), 95–110; Decay bounds in quasilinear parabolic problems, In: <it>Nonlinear Problems in Applied Mathematics</it>, Ed. by T.S. Angell, L. Pamela, Cook, R.E., SIAM, 1997).</p>http://www.journalofinequalitiesandapplications.com/content/3/152404Maximum principles for quasilinear parabolic equations |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Piro S Vernier Philippin GA |
spellingShingle |
Piro S Vernier Philippin GA Explicit exponential decay bounds in quasilinear parabolic problems Journal of Inequalities and Applications Maximum principles for quasilinear parabolic equations |
author_facet |
Piro S Vernier Philippin GA |
author_sort |
Piro S Vernier |
title |
Explicit exponential decay bounds in quasilinear parabolic problems |
title_short |
Explicit exponential decay bounds in quasilinear parabolic problems |
title_full |
Explicit exponential decay bounds in quasilinear parabolic problems |
title_fullStr |
Explicit exponential decay bounds in quasilinear parabolic problems |
title_full_unstemmed |
Explicit exponential decay bounds in quasilinear parabolic problems |
title_sort |
explicit exponential decay bounds in quasilinear parabolic problems |
publisher |
SpringerOpen |
series |
Journal of Inequalities and Applications |
issn |
1025-5834 1029-242X |
publishDate |
1999-01-01 |
description |
<p/> <p>This paper deals with classical solutions <inline-formula><graphic file="1029-242X-1999-152404-i1.gif"/></inline-formula> of some initial boundary value problems involving the quasilinear parabolic equation <inline-formula><graphic file="1029-242X-1999-152404-i2.gif"/></inline-formula> where <inline-formula><graphic file="1029-242X-1999-152404-i3.gif"/></inline-formula> are given functions. In the case of one space variable, i.e. when <inline-formula><graphic file="1029-242X-1999-152404-i4.gif"/></inline-formula>, we establish a maximum principle for the auxiliary function <inline-formula><graphic file="1029-242X-1999-152404-i5.gif"/></inline-formula> where a is an arbitrary nonnegative parameter. In some cases this maximum principle may be used to derive explicit exponential decay bounds for <inline-formula><graphic file="1029-242X-1999-152404-i6.gif"/></inline-formula> and <inline-formula><graphic file="1029-242X-1999-152404-i7.gif"/></inline-formula>. Some extensions in <inline-formula><graphic file="1029-242X-1999-152404-i8.gif"/></inline-formula> space dimensions are indicated. This work may be considered as a continuation of previous works by Payne and Philippin (<it>Mathematical Models and Methods in Applied Sciences</it>, 5 (1995), 95–110; Decay bounds in quasilinear parabolic problems, In: <it>Nonlinear Problems in Applied Mathematics</it>, Ed. by T.S. Angell, L. Pamela, Cook, R.E., SIAM, 1997).</p> |
topic |
Maximum principles for quasilinear parabolic equations |
url |
http://www.journalofinequalitiesandapplications.com/content/3/152404 |
work_keys_str_mv |
AT pirosvernier explicitexponentialdecayboundsinquasilinearparabolicproblems AT philippinga explicitexponentialdecayboundsinquasilinearparabolicproblems |
_version_ |
1725211367454015488 |