Reconstructed Order Analysis-Based Vibration Monitoring under Variable Rotation Speed by Using Multiple Blade Tip-Timing Sensors
On-line vibration monitoring is significant for high-speed rotating blades, and blade tip-timing (BTT) is generally regarded as a promising solution. BTT methods must assume that rotating speeds are constant. This assumption is impractical, and blade damages are always formed and accumulated during...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2018-09-01
|
Series: | Sensors |
Subjects: | |
Online Access: | http://www.mdpi.com/1424-8220/18/10/3235 |
id |
doaj-fe74b7db1dd644b9ab81ec00c77f08ee |
---|---|
record_format |
Article |
spelling |
doaj-fe74b7db1dd644b9ab81ec00c77f08ee2020-11-24T23:31:19ZengMDPI AGSensors1424-82202018-09-011810323510.3390/s18103235s18103235Reconstructed Order Analysis-Based Vibration Monitoring under Variable Rotation Speed by Using Multiple Blade Tip-Timing SensorsZhongsheng Chen0Jianhua Liu1Chi Zhan2Jing He3Weimin Wang4College of Electrical & Information Engineering, Hunan University of Technology, Zhuzhou 412007, ChinaCollege of Traffic Engineering, Hunan University of Technology, Zhuzhou 412007, ChinaScience and Technology on Integrated Logistics Support Laboratory, National University of Defense Technology, Changsha 410073, ChinaCollege of Electrical & Information Engineering, Hunan University of Technology, Zhuzhou 412007, ChinaBeijing Key Laboratory of Health Monitoring and Self-recovery for High-end Mechanical Equipment, Beijing University of Chemical Technology, Beijing 100029, ChinaOn-line vibration monitoring is significant for high-speed rotating blades, and blade tip-timing (BTT) is generally regarded as a promising solution. BTT methods must assume that rotating speeds are constant. This assumption is impractical, and blade damages are always formed and accumulated during variable operational conditions. Thus, how to carry out BTT vibration monitoring under variable rotation speed (VRS) is a big challenge. Angular sampling-based order analyses have been widely used for vibration signals in rotating machinery with variable speeds. However, BTT vibration signals are well under-sampled, and Shannon’s sampling theorem is not satisfied so that existing order analysis methods will not work well. To overcome this problem, a reconstructed order analysis-based BTT vibration monitoring method is proposed in this paper. First, the effects of VRS on BTT vibration monitoring are analyzed, and the basic structure of angular sampling-based BTT vibration monitoring under VRS is presented. Then a band-pass sampling-based engine order (EO) reconstruction algorithm is proposed for uniform BTT sensor configuration so that few BTT sensors can be used to extract high EOs. In addition, a periodically non-uniform sampling-based EO reconstruction algorithm is proposed for non-uniform BTT sensor configuration. Next, numerical simulations are done to validate the two reconstruction algorithms. In the end, an experimental set-up is built. Both uniform and non-uniform BTT vibration signals are collected, and reconstructed order analysis are carried out. Simulation and experimental results testify that the proposed algorithms can accurately capture characteristic high EOs of synchronous and asynchronous vibrations under VRS by using few BTT sensors. The significance of this paper is to overcome the limitation of conventional BTT methods of dealing with variable blade rotating speeds.http://www.mdpi.com/1424-8220/18/10/3235vibration monitoringmultiple blade tip-timing sensorsvariable rotation speedsangular samplingreconstructed order analysis |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Zhongsheng Chen Jianhua Liu Chi Zhan Jing He Weimin Wang |
spellingShingle |
Zhongsheng Chen Jianhua Liu Chi Zhan Jing He Weimin Wang Reconstructed Order Analysis-Based Vibration Monitoring under Variable Rotation Speed by Using Multiple Blade Tip-Timing Sensors Sensors vibration monitoring multiple blade tip-timing sensors variable rotation speeds angular sampling reconstructed order analysis |
author_facet |
Zhongsheng Chen Jianhua Liu Chi Zhan Jing He Weimin Wang |
author_sort |
Zhongsheng Chen |
title |
Reconstructed Order Analysis-Based Vibration Monitoring under Variable Rotation Speed by Using Multiple Blade Tip-Timing Sensors |
title_short |
Reconstructed Order Analysis-Based Vibration Monitoring under Variable Rotation Speed by Using Multiple Blade Tip-Timing Sensors |
title_full |
Reconstructed Order Analysis-Based Vibration Monitoring under Variable Rotation Speed by Using Multiple Blade Tip-Timing Sensors |
title_fullStr |
Reconstructed Order Analysis-Based Vibration Monitoring under Variable Rotation Speed by Using Multiple Blade Tip-Timing Sensors |
title_full_unstemmed |
Reconstructed Order Analysis-Based Vibration Monitoring under Variable Rotation Speed by Using Multiple Blade Tip-Timing Sensors |
title_sort |
reconstructed order analysis-based vibration monitoring under variable rotation speed by using multiple blade tip-timing sensors |
publisher |
MDPI AG |
series |
Sensors |
issn |
1424-8220 |
publishDate |
2018-09-01 |
description |
On-line vibration monitoring is significant for high-speed rotating blades, and blade tip-timing (BTT) is generally regarded as a promising solution. BTT methods must assume that rotating speeds are constant. This assumption is impractical, and blade damages are always formed and accumulated during variable operational conditions. Thus, how to carry out BTT vibration monitoring under variable rotation speed (VRS) is a big challenge. Angular sampling-based order analyses have been widely used for vibration signals in rotating machinery with variable speeds. However, BTT vibration signals are well under-sampled, and Shannon’s sampling theorem is not satisfied so that existing order analysis methods will not work well. To overcome this problem, a reconstructed order analysis-based BTT vibration monitoring method is proposed in this paper. First, the effects of VRS on BTT vibration monitoring are analyzed, and the basic structure of angular sampling-based BTT vibration monitoring under VRS is presented. Then a band-pass sampling-based engine order (EO) reconstruction algorithm is proposed for uniform BTT sensor configuration so that few BTT sensors can be used to extract high EOs. In addition, a periodically non-uniform sampling-based EO reconstruction algorithm is proposed for non-uniform BTT sensor configuration. Next, numerical simulations are done to validate the two reconstruction algorithms. In the end, an experimental set-up is built. Both uniform and non-uniform BTT vibration signals are collected, and reconstructed order analysis are carried out. Simulation and experimental results testify that the proposed algorithms can accurately capture characteristic high EOs of synchronous and asynchronous vibrations under VRS by using few BTT sensors. The significance of this paper is to overcome the limitation of conventional BTT methods of dealing with variable blade rotating speeds. |
topic |
vibration monitoring multiple blade tip-timing sensors variable rotation speeds angular sampling reconstructed order analysis |
url |
http://www.mdpi.com/1424-8220/18/10/3235 |
work_keys_str_mv |
AT zhongshengchen reconstructedorderanalysisbasedvibrationmonitoringundervariablerotationspeedbyusingmultiplebladetiptimingsensors AT jianhualiu reconstructedorderanalysisbasedvibrationmonitoringundervariablerotationspeedbyusingmultiplebladetiptimingsensors AT chizhan reconstructedorderanalysisbasedvibrationmonitoringundervariablerotationspeedbyusingmultiplebladetiptimingsensors AT jinghe reconstructedorderanalysisbasedvibrationmonitoringundervariablerotationspeedbyusingmultiplebladetiptimingsensors AT weiminwang reconstructedorderanalysisbasedvibrationmonitoringundervariablerotationspeedbyusingmultiplebladetiptimingsensors |
_version_ |
1725538391949312000 |