Neodymium cobalt oxide as a chemical sensor
Chemical sensing and electrical transport properties of neodymium coblate, NdCoO3, was investigated in this work. It was prepared by using co-precipitation method. Pure neodymium chloride and cobalt chloride were mixing in the presence of sodium hydroxide and the obtained co-precipitated powder was...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2018-03-01
|
Series: | Results in Physics |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2211379717320946 |
id |
doaj-fe742eba79754bdc85cc039c21cc23dc |
---|---|
record_format |
Article |
spelling |
doaj-fe742eba79754bdc85cc039c21cc23dc2020-11-24T22:56:07ZengElsevierResults in Physics2211-37972018-03-018578583Neodymium cobalt oxide as a chemical sensorI.A. Abdel-Latif0Mohammed M. Rahman1Sher Bahadar Khan2Department of Physics, Najran University, Najran, Saudi Arabia; Reactor Physics Department, NRC, Atomic Energy Authority, Abou Zabaal, Cairo, Egypt; Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran 11001, Saudi Arabia; Corresponding author at: Department of Physics, Najran University, Najran, Saudi Arabia.Chemistry Department, King Abdulaziz University, Faculty of Science, Jeddah 21589, P.O. Box 80203, Saudi ArabiaChemistry Department, King Abdulaziz University, Faculty of Science, Jeddah 21589, P.O. Box 80203, Saudi ArabiaChemical sensing and electrical transport properties of neodymium coblate, NdCoO3, was investigated in this work. It was prepared by using co-precipitation method. Pure neodymium chloride and cobalt chloride were mixing in the presence of sodium hydroxide and the obtained co-precipitated powder was calcined at 850 and 1000 °C. The synthesized composites, as-grown (NdCoO3-I), calcined at 850 °C (NdCoO3-II), and calcined at 1000 °C (NdCoO3-III) were studied in details in terms of their morphological and structural properties. The X-ray analysis confirmed that the synthesized products are well crystalline possessing single phase orthorhombic crystal system of space group Pbnm (62). The crystallite size of NdCoO3-I, NdCoO3-II, and NdCoO3-III is 22, 111, and 338 nm, respectively which reflect that crystallite size is increasing with increase in firing temperature. The DC resistivity was measured as a function of temperature in the temperature range from room temperature up to 200 °C. All NdCoO3 are semiconductor in this range of temperature but showed different activation energy which strongly depends on the crystallite size of the products. The activation energy decreased with increase in crystallite size, 0.798, 0.414 and 0.371 eV for NdCoO3-I, NdCoO3-II, and NdCoO3-III, respectively. Thus resistivity increases with increase in crystallite size of NdCoO3. All NdCoO3 products were tested as chemical sensor for acetone by electrochemical approaches and showed excellent sensitivity. Among the NdCoO3 samples, NdCoO3-III showed the highest sensitivity (3.4722 μAcm−2 mM−1) compared to other compositions and gradually decreased to 3.2407 μAcm−2 mM−1 with decreasing the crystallite size of NdCoO3-II. It is also observed that the sensitivity drastically decreased to 0.76253 μAcm−2 mM−1 in the case of NdCoO3-I. It is introduced an efficient route for the detection of environmental unsafe chemicals by electrochemical approach for the safety of healthcare and environmental fields in broad scales.http://www.sciencedirect.com/science/article/pii/S2211379717320946 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
I.A. Abdel-Latif Mohammed M. Rahman Sher Bahadar Khan |
spellingShingle |
I.A. Abdel-Latif Mohammed M. Rahman Sher Bahadar Khan Neodymium cobalt oxide as a chemical sensor Results in Physics |
author_facet |
I.A. Abdel-Latif Mohammed M. Rahman Sher Bahadar Khan |
author_sort |
I.A. Abdel-Latif |
title |
Neodymium cobalt oxide as a chemical sensor |
title_short |
Neodymium cobalt oxide as a chemical sensor |
title_full |
Neodymium cobalt oxide as a chemical sensor |
title_fullStr |
Neodymium cobalt oxide as a chemical sensor |
title_full_unstemmed |
Neodymium cobalt oxide as a chemical sensor |
title_sort |
neodymium cobalt oxide as a chemical sensor |
publisher |
Elsevier |
series |
Results in Physics |
issn |
2211-3797 |
publishDate |
2018-03-01 |
description |
Chemical sensing and electrical transport properties of neodymium coblate, NdCoO3, was investigated in this work. It was prepared by using co-precipitation method. Pure neodymium chloride and cobalt chloride were mixing in the presence of sodium hydroxide and the obtained co-precipitated powder was calcined at 850 and 1000 °C. The synthesized composites, as-grown (NdCoO3-I), calcined at 850 °C (NdCoO3-II), and calcined at 1000 °C (NdCoO3-III) were studied in details in terms of their morphological and structural properties. The X-ray analysis confirmed that the synthesized products are well crystalline possessing single phase orthorhombic crystal system of space group Pbnm (62). The crystallite size of NdCoO3-I, NdCoO3-II, and NdCoO3-III is 22, 111, and 338 nm, respectively which reflect that crystallite size is increasing with increase in firing temperature. The DC resistivity was measured as a function of temperature in the temperature range from room temperature up to 200 °C. All NdCoO3 are semiconductor in this range of temperature but showed different activation energy which strongly depends on the crystallite size of the products. The activation energy decreased with increase in crystallite size, 0.798, 0.414 and 0.371 eV for NdCoO3-I, NdCoO3-II, and NdCoO3-III, respectively. Thus resistivity increases with increase in crystallite size of NdCoO3. All NdCoO3 products were tested as chemical sensor for acetone by electrochemical approaches and showed excellent sensitivity. Among the NdCoO3 samples, NdCoO3-III showed the highest sensitivity (3.4722 μAcm−2 mM−1) compared to other compositions and gradually decreased to 3.2407 μAcm−2 mM−1 with decreasing the crystallite size of NdCoO3-II. It is also observed that the sensitivity drastically decreased to 0.76253 μAcm−2 mM−1 in the case of NdCoO3-I. It is introduced an efficient route for the detection of environmental unsafe chemicals by electrochemical approach for the safety of healthcare and environmental fields in broad scales. |
url |
http://www.sciencedirect.com/science/article/pii/S2211379717320946 |
work_keys_str_mv |
AT iaabdellatif neodymiumcobaltoxideasachemicalsensor AT mohammedmrahman neodymiumcobaltoxideasachemicalsensor AT sherbahadarkhan neodymiumcobaltoxideasachemicalsensor |
_version_ |
1725654745851363328 |