Maximum Power Point Tracking Using ANFIS for a Reconfigurable PV-Based Battery Charger Under Non-Uniform Operating Conditions

This paper investigates an adaptive neuro-fuzzy inference system (ANFIS)-based maximum power point tracking (MPPT) technique applied to a reconfigurable photovoltaic (PV)-based battery charger. The proposed method uses training data collected from a dynamic model of the PV module to train the ANFIS...

Full description

Bibliographic Details
Main Authors: Sara A. Ibrahim, Ahmed Nasr, Mohamed A. Enany
Format: Article
Language:English
Published: IEEE 2021-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9508417/
Description
Summary:This paper investigates an adaptive neuro-fuzzy inference system (ANFIS)-based maximum power point tracking (MPPT) technique applied to a reconfigurable photovoltaic (PV)-based battery charger. The proposed method uses training data collected from a dynamic model of the PV module to train the ANFIS to locate the maximum power point (MPP) under different environmental conditions. Based on the estimated MPP, the proposed method can select the optimal configuration of a PV array and the corresponding global MPP under the non-uniform distribution of the temperature and irradiance. In this way, the proposed method can guarantee the highest possible power harvesting to charge a lithium-ion battery under either partial shading conditions or characteristics mismatch, achieving a high system efficiency. The proposed method is compared with the conventional MPPT scheme to verify its feasibility and effectiveness. The verification results show that the proposed method provides higher accuracy, faster response and better tracking efficiency.
ISSN:2169-3536