Energy-Balanced Routing Algorithm Based on Ant Colony Optimization for Mobile Ad Hoc Networks

The mobile ad hoc network (MANET) is a multi-hop, non-central network composed of mobile terminals with self-organizing features. Aiming at the problem of extra energy consumption caused by node motion in MANETs, this paper proposes an improved energy and mobility ant colony optimization (IEMACO) ro...

Full description

Bibliographic Details
Main Authors: Dong Yang, Hongxing Xia, Erfei Xu, Dongliang Jing, Hailin Zhang
Format: Article
Language:English
Published: MDPI AG 2018-10-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/18/11/3657
Description
Summary:The mobile ad hoc network (MANET) is a multi-hop, non-central network composed of mobile terminals with self-organizing features. Aiming at the problem of extra energy consumption caused by node motion in MANETs, this paper proposes an improved energy and mobility ant colony optimization (IEMACO) routing algorithm. Firstly, the algorithm accelerates the convergence speed of the routing algorithm and reduces the number of route discovery packets by introducing an <i>offset coefficient</i> of the transition probability. Then, based on the energy consumption rate, the remaining lifetime of nodes (RLT<i>n</i>) is considered. The position and velocity information predicts the remaining lifetime of the link (RLT<i>l</i>). The algorithm combines RLT<i>n</i> and RLT<i>l</i> to design the pheromone generation method, which selects the better quality path according to the transition probability to ensure continuous data transmission. As a result, the energy consumption in the network is balanced. The simulation results show that compared to the Ad Hoc on-demand multipath distance vector (AOMDV) algorithm with multipath routing and the Ant Hoc Max-Min-Path (AntHocMMP) algorithm in consideration of node energy consumption and mobility, the IEMACO algorithm can reduce the frequency of route discovery and has lower end-to-end delay as well as packet loss rate especially when nodes move, and can extend the network lifetime.
ISSN:1424-8220