Molecular mechanisms of cell proliferation induced by low power laser irradiation
<p>Abstract</p> <p>Low power laser irradiation (LPLI) promotes proliferation of multiple cells, which (especially red and near infrared light) is mainly through the activation of mitochondrial respiratory chain and the initiation of cellular signaling. Recently, the signaling prote...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2009-01-01
|
Series: | Journal of Biomedical Science |
Online Access: | http://www.jbiomedsci.com/content/16/1/4 |
Summary: | <p>Abstract</p> <p>Low power laser irradiation (LPLI) promotes proliferation of multiple cells, which (especially red and near infrared light) is mainly through the activation of mitochondrial respiratory chain and the initiation of cellular signaling. Recently, the signaling proteins involved in LPLI-induced proliferation merit special attention, some of which are regulated by mitochondrial signaling. Hepatocyte growth factor receptor (c-Met), a member of tyrosine protein kinase receptors (TPKR), is phosphorylated during LPLI-induced proliferation, but tumor necrosis factor alpha (TNF-alpha) receptor has not been affected. Activated TPKR could activate its downstream signaling elements, like Ras/Raf/MEK/ERK, PI3K/Akt/eIF4E, PI3K/Akt/eNOS and PLC-gamma/PKC pathways. Other two pathways, ΔΨm/ATP/cAMP/JNK/AP-1 and ROS/Src, are also involved in LPLI-induced proliferation. LPLI-induced cell cycle progression can be regulated by the activation or elevated expressions of cell cycle-specific proteins. Furthermore, LPLI induces the synthesis or release of many molecules, like growth factors, interleukins, inflammatory cytokines and others, which are related to promotive effects of LPLI.</p> |
---|---|
ISSN: | 1021-7770 1423-0127 |