A Cohen Type Inequality for Fourier Expansions of Orthogonal Polynomials with a Nondiscrete Jacobi-Sobolev Inner Product
<p/> <p>Let <inline-formula> <graphic file="1029-242X-2010-128746-i1.gif"/></inline-formula> denote the sequence of polynomials orthogonal with respect to the non-discrete Sobolev inner product <inline-formula> <graphic file="1029-242X-2010-12874...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2010-01-01
|
Series: | Journal of Inequalities and Applications |
Online Access: | http://www.journalofinequalitiesandapplications.com/content/2010/128746 |
id |
doaj-fe505844a94543a9a4e624ed293b254a |
---|---|
record_format |
Article |
spelling |
doaj-fe505844a94543a9a4e624ed293b254a2020-11-24T23:56:30ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X2010-01-0120101128746A Cohen Type Inequality for Fourier Expansions of Orthogonal Polynomials with a Nondiscrete Jacobi-Sobolev Inner ProductMarcellán FranciscoFejzullahu BujarXh<p/> <p>Let <inline-formula> <graphic file="1029-242X-2010-128746-i1.gif"/></inline-formula> denote the sequence of polynomials orthogonal with respect to the non-discrete Sobolev inner product <inline-formula> <graphic file="1029-242X-2010-128746-i2.gif"/></inline-formula>, where <inline-formula> <graphic file="1029-242X-2010-128746-i3.gif"/></inline-formula> and <inline-formula> <graphic file="1029-242X-2010-128746-i4.gif"/></inline-formula> with <inline-formula> <graphic file="1029-242X-2010-128746-i5.gif"/></inline-formula>, <inline-formula> <graphic file="1029-242X-2010-128746-i6.gif"/></inline-formula>. In this paper, we prove a Cohen type inequality for the Fourier expansion in terms of the orthogonal polynomials <inline-formula> <graphic file="1029-242X-2010-128746-i7.gif"/></inline-formula> Necessary conditions for the norm convergence of such a Fourier expansion are given. Finally, the failure of almost everywhere convergence of the Fourier expansion of a function in terms of the orthogonal polynomials associated with the above Sobolev inner product is proved.</p>http://www.journalofinequalitiesandapplications.com/content/2010/128746 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Marcellán Francisco Fejzullahu BujarXh |
spellingShingle |
Marcellán Francisco Fejzullahu BujarXh A Cohen Type Inequality for Fourier Expansions of Orthogonal Polynomials with a Nondiscrete Jacobi-Sobolev Inner Product Journal of Inequalities and Applications |
author_facet |
Marcellán Francisco Fejzullahu BujarXh |
author_sort |
Marcellán Francisco |
title |
A Cohen Type Inequality for Fourier Expansions of Orthogonal Polynomials with a Nondiscrete Jacobi-Sobolev Inner Product |
title_short |
A Cohen Type Inequality for Fourier Expansions of Orthogonal Polynomials with a Nondiscrete Jacobi-Sobolev Inner Product |
title_full |
A Cohen Type Inequality for Fourier Expansions of Orthogonal Polynomials with a Nondiscrete Jacobi-Sobolev Inner Product |
title_fullStr |
A Cohen Type Inequality for Fourier Expansions of Orthogonal Polynomials with a Nondiscrete Jacobi-Sobolev Inner Product |
title_full_unstemmed |
A Cohen Type Inequality for Fourier Expansions of Orthogonal Polynomials with a Nondiscrete Jacobi-Sobolev Inner Product |
title_sort |
cohen type inequality for fourier expansions of orthogonal polynomials with a nondiscrete jacobi-sobolev inner product |
publisher |
SpringerOpen |
series |
Journal of Inequalities and Applications |
issn |
1025-5834 1029-242X |
publishDate |
2010-01-01 |
description |
<p/> <p>Let <inline-formula> <graphic file="1029-242X-2010-128746-i1.gif"/></inline-formula> denote the sequence of polynomials orthogonal with respect to the non-discrete Sobolev inner product <inline-formula> <graphic file="1029-242X-2010-128746-i2.gif"/></inline-formula>, where <inline-formula> <graphic file="1029-242X-2010-128746-i3.gif"/></inline-formula> and <inline-formula> <graphic file="1029-242X-2010-128746-i4.gif"/></inline-formula> with <inline-formula> <graphic file="1029-242X-2010-128746-i5.gif"/></inline-formula>, <inline-formula> <graphic file="1029-242X-2010-128746-i6.gif"/></inline-formula>. In this paper, we prove a Cohen type inequality for the Fourier expansion in terms of the orthogonal polynomials <inline-formula> <graphic file="1029-242X-2010-128746-i7.gif"/></inline-formula> Necessary conditions for the norm convergence of such a Fourier expansion are given. Finally, the failure of almost everywhere convergence of the Fourier expansion of a function in terms of the orthogonal polynomials associated with the above Sobolev inner product is proved.</p> |
url |
http://www.journalofinequalitiesandapplications.com/content/2010/128746 |
work_keys_str_mv |
AT marcell225nfrancisco acohentypeinequalityforfourierexpansionsoforthogonalpolynomialswithanondiscretejacobisobolevinnerproduct AT fejzullahubujarxh acohentypeinequalityforfourierexpansionsoforthogonalpolynomialswithanondiscretejacobisobolevinnerproduct AT marcell225nfrancisco cohentypeinequalityforfourierexpansionsoforthogonalpolynomialswithanondiscretejacobisobolevinnerproduct AT fejzullahubujarxh cohentypeinequalityforfourierexpansionsoforthogonalpolynomialswithanondiscretejacobisobolevinnerproduct |
_version_ |
1725458097203314688 |