Summary: | Abstract In many particle physics models, domain walls can form during the phase transition process after the breakdown of the discrete symmetry. Utilizing the ℤ3 symmetric complex singlet scalar extension of the Standard Model, we study the gravitational waves produced by the strongly first-order electroweak phase transition and the domain wall decay. The gravitational wave spectrum is of a typical two-peak shape. The high frequency peak corresponding to the strongly first-order electroweak phase transition is able to be probed by the future space-based interferometers, and the low frequency peak coming from the domain wall decay is far beyond the capability of the current Pulsar Timing Arrays, and future Square Kilometer Array.
|