Schwinger pair production with ultracold atoms
We consider a system of ultracold atoms in an optical lattice as a quantum simulator for electron–positron pair production in quantum electrodynamics (QED). For a setup in one spatial dimension, we investigate the nonequilibrium phenomenon of pair production including the backreaction leading to pla...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2016-09-01
|
Series: | Physics Letters B |
Online Access: | http://www.sciencedirect.com/science/article/pii/S037026931630377X |
id |
doaj-fe142d2529854b4abe65d2b8b7248a3d |
---|---|
record_format |
Article |
spelling |
doaj-fe142d2529854b4abe65d2b8b7248a3d2020-11-25T01:01:38ZengElsevierPhysics Letters B0370-26931873-24452016-09-01760C74274610.1016/j.physletb.2016.07.036Schwinger pair production with ultracold atomsV. Kasper0F. Hebenstreit1M.K. Oberthaler2J. Berges3Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, GermanyAlbert Einstein Center, Institut für Theoretische Physik, Universität Bern, Sidlerstrasse 5, 3012 Bern, SwitzerlandKirchhoff Institut für Physik, Universität Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, GermanyInstitut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, GermanyWe consider a system of ultracold atoms in an optical lattice as a quantum simulator for electron–positron pair production in quantum electrodynamics (QED). For a setup in one spatial dimension, we investigate the nonequilibrium phenomenon of pair production including the backreaction leading to plasma oscillations. Unlike previous investigations on quantum link models, we focus on the infinite-dimensional Hilbert space of QED and show that it may be well approximated by experiments employing Bose–Einstein condensates interacting with fermionic atoms. Numerical calculations based on functional integral techniques give a unique access to the physical parameters required to realize QED phenomena in a cold atom experiment. In particular, we use our approach to consider quantum link models in a yet unexplored parameter regime and give bounds for their ability to capture essential features of the physics. The results suggest a paradigmatic change towards realizations using coherent many-body states for quantum simulations of high-energy particle physics phenomena.http://www.sciencedirect.com/science/article/pii/S037026931630377X |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
V. Kasper F. Hebenstreit M.K. Oberthaler J. Berges |
spellingShingle |
V. Kasper F. Hebenstreit M.K. Oberthaler J. Berges Schwinger pair production with ultracold atoms Physics Letters B |
author_facet |
V. Kasper F. Hebenstreit M.K. Oberthaler J. Berges |
author_sort |
V. Kasper |
title |
Schwinger pair production with ultracold atoms |
title_short |
Schwinger pair production with ultracold atoms |
title_full |
Schwinger pair production with ultracold atoms |
title_fullStr |
Schwinger pair production with ultracold atoms |
title_full_unstemmed |
Schwinger pair production with ultracold atoms |
title_sort |
schwinger pair production with ultracold atoms |
publisher |
Elsevier |
series |
Physics Letters B |
issn |
0370-2693 1873-2445 |
publishDate |
2016-09-01 |
description |
We consider a system of ultracold atoms in an optical lattice as a quantum simulator for electron–positron pair production in quantum electrodynamics (QED). For a setup in one spatial dimension, we investigate the nonequilibrium phenomenon of pair production including the backreaction leading to plasma oscillations. Unlike previous investigations on quantum link models, we focus on the infinite-dimensional Hilbert space of QED and show that it may be well approximated by experiments employing Bose–Einstein condensates interacting with fermionic atoms. Numerical calculations based on functional integral techniques give a unique access to the physical parameters required to realize QED phenomena in a cold atom experiment. In particular, we use our approach to consider quantum link models in a yet unexplored parameter regime and give bounds for their ability to capture essential features of the physics. The results suggest a paradigmatic change towards realizations using coherent many-body states for quantum simulations of high-energy particle physics phenomena. |
url |
http://www.sciencedirect.com/science/article/pii/S037026931630377X |
work_keys_str_mv |
AT vkasper schwingerpairproductionwithultracoldatoms AT fhebenstreit schwingerpairproductionwithultracoldatoms AT mkoberthaler schwingerpairproductionwithultracoldatoms AT jberges schwingerpairproductionwithultracoldatoms |
_version_ |
1725208197132713984 |