Crystal and Supramolecular Structure of Bacterial Cellulose Hydrolyzed by Cellobiohydrolase from <i>Scytalidium Candidum</i> 3C: A Basis for Development of Biodegradable Wound Dressings
The crystal and supramolecular structure of the bacterial cellulose (BC) has been studied at different stages of cellobiohydrolase hydrolysis using various physical and microscopic methods. Enzymatic hydrolysis significantly affected the crystal and supramolecular structure of native BC, in which th...
Main Authors: | , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-05-01
|
Series: | Materials |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1944/13/9/2087 |
id |
doaj-fe0737085cd8479683a7d58a6bdaa907 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Lyubov A. Ivanova Konstantin B. Ustinovich Tamara V. Khamova Elena V. Eneyskaya Yulia E. Gorshkova Natalia V. Tsvigun Vladimir S. Burdakov Nikolay A. Verlov Evgenii V. Zinovev Marat S. Asadulaev Anton S. Shabunin Andrey M. Fedyk Alexander Ye. Baranchikov Gennady P. Kopitsa Anna A. Kulminskaya |
spellingShingle |
Lyubov A. Ivanova Konstantin B. Ustinovich Tamara V. Khamova Elena V. Eneyskaya Yulia E. Gorshkova Natalia V. Tsvigun Vladimir S. Burdakov Nikolay A. Verlov Evgenii V. Zinovev Marat S. Asadulaev Anton S. Shabunin Andrey M. Fedyk Alexander Ye. Baranchikov Gennady P. Kopitsa Anna A. Kulminskaya Crystal and Supramolecular Structure of Bacterial Cellulose Hydrolyzed by Cellobiohydrolase from <i>Scytalidium Candidum</i> 3C: A Basis for Development of Biodegradable Wound Dressings Materials bacterial cellulose cellobiohydrolase enzymatic hydrolysis meso- and microstructure wound dressing |
author_facet |
Lyubov A. Ivanova Konstantin B. Ustinovich Tamara V. Khamova Elena V. Eneyskaya Yulia E. Gorshkova Natalia V. Tsvigun Vladimir S. Burdakov Nikolay A. Verlov Evgenii V. Zinovev Marat S. Asadulaev Anton S. Shabunin Andrey M. Fedyk Alexander Ye. Baranchikov Gennady P. Kopitsa Anna A. Kulminskaya |
author_sort |
Lyubov A. Ivanova |
title |
Crystal and Supramolecular Structure of Bacterial Cellulose Hydrolyzed by Cellobiohydrolase from <i>Scytalidium Candidum</i> 3C: A Basis for Development of Biodegradable Wound Dressings |
title_short |
Crystal and Supramolecular Structure of Bacterial Cellulose Hydrolyzed by Cellobiohydrolase from <i>Scytalidium Candidum</i> 3C: A Basis for Development of Biodegradable Wound Dressings |
title_full |
Crystal and Supramolecular Structure of Bacterial Cellulose Hydrolyzed by Cellobiohydrolase from <i>Scytalidium Candidum</i> 3C: A Basis for Development of Biodegradable Wound Dressings |
title_fullStr |
Crystal and Supramolecular Structure of Bacterial Cellulose Hydrolyzed by Cellobiohydrolase from <i>Scytalidium Candidum</i> 3C: A Basis for Development of Biodegradable Wound Dressings |
title_full_unstemmed |
Crystal and Supramolecular Structure of Bacterial Cellulose Hydrolyzed by Cellobiohydrolase from <i>Scytalidium Candidum</i> 3C: A Basis for Development of Biodegradable Wound Dressings |
title_sort |
crystal and supramolecular structure of bacterial cellulose hydrolyzed by cellobiohydrolase from <i>scytalidium candidum</i> 3c: a basis for development of biodegradable wound dressings |
publisher |
MDPI AG |
series |
Materials |
issn |
1996-1944 |
publishDate |
2020-05-01 |
description |
The crystal and supramolecular structure of the bacterial cellulose (BC) has been studied at different stages of cellobiohydrolase hydrolysis using various physical and microscopic methods. Enzymatic hydrolysis significantly affected the crystal and supramolecular structure of native BC, in which the 3D polymer network consisted of nanoribbons with a thickness <i>T</i> ≈ 8 nm and a width <i>W</i> ≈ 50 nm, and with a developed specific surface <i>S</i><sub>BET</sub> ≈ 260 m<sup>2</sup>·g<sup>−1</sup>. Biodegradation for 24 h led to a ten percent decrease in the mean crystal size <i>D<sub>hkl</sub></i> of BC, to two-fold increase in the sizes of nanoribbons, and in the specific surface area <i>S</i><sub>BET</sub> up to ≈ 100 m<sup>2</sup>·g<sup>−1</sup>. Atomic force and scanning electron microscopy images showed BC microstructure “loosening“after enzymatic treatment, as well as the formation and accumulation of submicron particles in the cells of the 3D polymer network. Experiments in vitro and in vivo did not reveal cytotoxic effect by the enzyme addition to BC dressings and showed a generally positive influence on the treatment of extensive III-degree burns, significantly accelerating wound healing in rats. Thus, in our opinion, the results obtained can serve as a basis for further development of effective biodegradable dressings for wound healing. |
topic |
bacterial cellulose cellobiohydrolase enzymatic hydrolysis meso- and microstructure wound dressing |
url |
https://www.mdpi.com/1996-1944/13/9/2087 |
work_keys_str_mv |
AT lyubovaivanova crystalandsupramolecularstructureofbacterialcellulosehydrolyzedbycellobiohydrolasefromiscytalidiumcandidumi3cabasisfordevelopmentofbiodegradablewounddressings AT konstantinbustinovich crystalandsupramolecularstructureofbacterialcellulosehydrolyzedbycellobiohydrolasefromiscytalidiumcandidumi3cabasisfordevelopmentofbiodegradablewounddressings AT tamaravkhamova crystalandsupramolecularstructureofbacterialcellulosehydrolyzedbycellobiohydrolasefromiscytalidiumcandidumi3cabasisfordevelopmentofbiodegradablewounddressings AT elenaveneyskaya crystalandsupramolecularstructureofbacterialcellulosehydrolyzedbycellobiohydrolasefromiscytalidiumcandidumi3cabasisfordevelopmentofbiodegradablewounddressings AT yuliaegorshkova crystalandsupramolecularstructureofbacterialcellulosehydrolyzedbycellobiohydrolasefromiscytalidiumcandidumi3cabasisfordevelopmentofbiodegradablewounddressings AT nataliavtsvigun crystalandsupramolecularstructureofbacterialcellulosehydrolyzedbycellobiohydrolasefromiscytalidiumcandidumi3cabasisfordevelopmentofbiodegradablewounddressings AT vladimirsburdakov crystalandsupramolecularstructureofbacterialcellulosehydrolyzedbycellobiohydrolasefromiscytalidiumcandidumi3cabasisfordevelopmentofbiodegradablewounddressings AT nikolayaverlov crystalandsupramolecularstructureofbacterialcellulosehydrolyzedbycellobiohydrolasefromiscytalidiumcandidumi3cabasisfordevelopmentofbiodegradablewounddressings AT evgeniivzinovev crystalandsupramolecularstructureofbacterialcellulosehydrolyzedbycellobiohydrolasefromiscytalidiumcandidumi3cabasisfordevelopmentofbiodegradablewounddressings AT maratsasadulaev crystalandsupramolecularstructureofbacterialcellulosehydrolyzedbycellobiohydrolasefromiscytalidiumcandidumi3cabasisfordevelopmentofbiodegradablewounddressings AT antonsshabunin crystalandsupramolecularstructureofbacterialcellulosehydrolyzedbycellobiohydrolasefromiscytalidiumcandidumi3cabasisfordevelopmentofbiodegradablewounddressings AT andreymfedyk crystalandsupramolecularstructureofbacterialcellulosehydrolyzedbycellobiohydrolasefromiscytalidiumcandidumi3cabasisfordevelopmentofbiodegradablewounddressings AT alexanderyebaranchikov crystalandsupramolecularstructureofbacterialcellulosehydrolyzedbycellobiohydrolasefromiscytalidiumcandidumi3cabasisfordevelopmentofbiodegradablewounddressings AT gennadypkopitsa crystalandsupramolecularstructureofbacterialcellulosehydrolyzedbycellobiohydrolasefromiscytalidiumcandidumi3cabasisfordevelopmentofbiodegradablewounddressings AT annaakulminskaya crystalandsupramolecularstructureofbacterialcellulosehydrolyzedbycellobiohydrolasefromiscytalidiumcandidumi3cabasisfordevelopmentofbiodegradablewounddressings |
_version_ |
1724946631471661056 |
spelling |
doaj-fe0737085cd8479683a7d58a6bdaa9072020-11-25T02:03:40ZengMDPI AGMaterials1996-19442020-05-01132087208710.3390/ma13092087Crystal and Supramolecular Structure of Bacterial Cellulose Hydrolyzed by Cellobiohydrolase from <i>Scytalidium Candidum</i> 3C: A Basis for Development of Biodegradable Wound DressingsLyubov A. Ivanova0Konstantin B. Ustinovich1Tamara V. Khamova2Elena V. Eneyskaya3Yulia E. Gorshkova4Natalia V. Tsvigun5Vladimir S. Burdakov6Nikolay A. Verlov7Evgenii V. Zinovev8Marat S. Asadulaev9Anton S. Shabunin10Andrey M. Fedyk11Alexander Ye. Baranchikov12Gennady P. Kopitsa13Anna A. Kulminskaya14Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center “Kurchatov Insititute”, 1 Orlova Roscha, 188300 Gatchina, RussiaKurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky pr. 31, 119991 Moscow, RussiaGrebenshchikov Institute of Silicate Chemistry of the Russian Academy of Sciences, Adm. Makarova emb. 2, 199155 St. Petersburg, RussiaPetersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center “Kurchatov Insititute”, 1 Orlova Roscha, 188300 Gatchina, RussiaFrank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie str. 6, 141980 Dubna, RussiaFederal Scientific Research Center “Crystallography and Photonics” of the Russian Academy of Sciences, Leninsky pr. 59, 119333 Moscow, RussiaPetersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center “Kurchatov Insititute”, 1 Orlova Roscha, 188300 Gatchina, RussiaPetersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center “Kurchatov Insititute”, 1 Orlova Roscha, 188300 Gatchina, RussiaSaint Petersburg Research Institute of Emergency Medicine n.a. I.I. Dzhanelidze, Budapeshtskaya str. 3, 192242 St. Petersburg, RussiaLaboratory of Experimental Surgery of Scientific Research Center, Saint-Petersburg State Pediatric Medical University, Litovskaya str. 2, 194100 St. Petersburg, RussiaInstitute of Physics, Nanotechnology and Telecommunications, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya str. 29, 195251 St. Petersburg, RussiaLaboratory of Experimental Surgery of Scientific Research Center, Saint-Petersburg State Pediatric Medical University, Litovskaya str. 2, 194100 St. Petersburg, RussiaKurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky pr. 31, 119991 Moscow, RussiaPetersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center “Kurchatov Insititute”, 1 Orlova Roscha, 188300 Gatchina, RussiaPetersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center “Kurchatov Insititute”, 1 Orlova Roscha, 188300 Gatchina, RussiaThe crystal and supramolecular structure of the bacterial cellulose (BC) has been studied at different stages of cellobiohydrolase hydrolysis using various physical and microscopic methods. Enzymatic hydrolysis significantly affected the crystal and supramolecular structure of native BC, in which the 3D polymer network consisted of nanoribbons with a thickness <i>T</i> ≈ 8 nm and a width <i>W</i> ≈ 50 nm, and with a developed specific surface <i>S</i><sub>BET</sub> ≈ 260 m<sup>2</sup>·g<sup>−1</sup>. Biodegradation for 24 h led to a ten percent decrease in the mean crystal size <i>D<sub>hkl</sub></i> of BC, to two-fold increase in the sizes of nanoribbons, and in the specific surface area <i>S</i><sub>BET</sub> up to ≈ 100 m<sup>2</sup>·g<sup>−1</sup>. Atomic force and scanning electron microscopy images showed BC microstructure “loosening“after enzymatic treatment, as well as the formation and accumulation of submicron particles in the cells of the 3D polymer network. Experiments in vitro and in vivo did not reveal cytotoxic effect by the enzyme addition to BC dressings and showed a generally positive influence on the treatment of extensive III-degree burns, significantly accelerating wound healing in rats. Thus, in our opinion, the results obtained can serve as a basis for further development of effective biodegradable dressings for wound healing.https://www.mdpi.com/1996-1944/13/9/2087bacterial cellulosecellobiohydrolaseenzymatic hydrolysismeso- and microstructurewound dressing |