ErmF and ereD are responsible for erythromycin resistance in Riemerella anatipestifer.

To investigate the genetic basis of erythromycin resistance in Riemerella anatipestifer, the MIC to erythromycin of 79 R. anatipestifer isolates from China and one typed strain, ATCC11845, were evaluated. The results showed that 43 of 80 (53.8%) of the tested R. anatipestifer strains showed resistan...

Full description

Bibliographic Details
Main Authors: Linlin Xing, Hui Yu, Jingjing Qi, Pan Jiang, Bingqing Sun, Junsheng Cui, Changcan Ou, Weishan Chang, Qinghai Hu
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2015-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC4481100?pdf=render
Description
Summary:To investigate the genetic basis of erythromycin resistance in Riemerella anatipestifer, the MIC to erythromycin of 79 R. anatipestifer isolates from China and one typed strain, ATCC11845, were evaluated. The results showed that 43 of 80 (53.8%) of the tested R. anatipestifer strains showed resistance to erythromycin, and 30 of 43 erythromycin-resistant R. anatipestifer strains carried ermF or ermFU with an MIC in the range of 32-2048 μg/ml, while the other 13 strains carrying the ereD gene exhibited an MIC of 4-16 μg/ml. Of 30 ermF + R. anatipestifer strains, 27 (90.0%) carried the ermFU gene which may have been derived from the CTnDOT-like element, while three other strains carried ermF from transposon Tn4351. Moreover, sequence analysis revealed that ermF, ermFU, and ereD were located within the multiresistance region of the R. anatipestifer genome.
ISSN:1932-6203