Depth Migration Based on Two-Way Wave Equation to Image OBS Multiples: A Case Study in the South Shetland Margin (Antarctica)
With the development of marine seismic exploration, the ocean bottom seismometer (OBS) as a new seismic acquisition technology has been widely concerned. Although multiple waves are frequently viewed as noises, they may carry a wealth of subsurface information and produce a broader illumination than...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi-Wiley
2020-01-01
|
Series: | Geofluids |
Online Access: | http://dx.doi.org/10.1155/2020/8843048 |
id |
doaj-fde8f1a9b804419d84b3caf1c2c1ea37 |
---|---|
record_format |
Article |
spelling |
doaj-fde8f1a9b804419d84b3caf1c2c1ea372020-11-25T04:12:30ZengHindawi-WileyGeofluids1468-81151468-81232020-01-01202010.1155/2020/88430488843048Depth Migration Based on Two-Way Wave Equation to Image OBS Multiples: A Case Study in the South Shetland Margin (Antarctica)Sha Song0Jiachun You1Qing Cao2Bin Chen3Xiaomeng Cao4School of Geological Engineering and Geomatics, Chang’an University, Xi’an 710054, ChinaSchool of Geophysics, Chengdu University of Technology, Chengdu 610059, ChinaShaanxi Key Laboratory of Petroleum Accumulation Geology, Xi’an Shiyou University, Xi’an 710065, ChinaShaanxi Key Laboratory of Petroleum Accumulation Geology, Xi’an Shiyou University, Xi’an 710065, ChinaPilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, ChinaWith the development of marine seismic exploration, the ocean bottom seismometer (OBS) as a new seismic acquisition technology has been widely concerned. Although multiple waves are frequently viewed as noises, they may carry a wealth of subsurface information and produce a broader illumination than primary waves. To perform multiple wave imaging, we propose to utilize a two-way wave equation depth wavefield extrapolation method which is rarely used in this field. A simple dipping model is imaged by using primary and multiple waves, which proves the superiority of multiple waves in imaging over the primary waves and lays a foundation for practical application. Moreover, the comparison of multiple imaging results by reverse time migration and those by our proposed method demonstrates that our proposed method requires less storage space. In this study, we apply this migration method to actual OBS data collected in the South Shetland margin (Antarctica), where gas hydrates have been well documented. Firstly, the wavefield separation method is adopted to process the OBS data, so as to produce reliable primary and multiples waves; secondly, the ray-tracing method is used to derive the velocity field; and finally, the depth wavefield extrapolation method based on the two-way wave equation is applied to image primary and multiple waves. Migration results show that multiple waves provide a broader illumination and a clearer sediment structure than primary waves, especially for the highly shallow reflections.http://dx.doi.org/10.1155/2020/8843048 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Sha Song Jiachun You Qing Cao Bin Chen Xiaomeng Cao |
spellingShingle |
Sha Song Jiachun You Qing Cao Bin Chen Xiaomeng Cao Depth Migration Based on Two-Way Wave Equation to Image OBS Multiples: A Case Study in the South Shetland Margin (Antarctica) Geofluids |
author_facet |
Sha Song Jiachun You Qing Cao Bin Chen Xiaomeng Cao |
author_sort |
Sha Song |
title |
Depth Migration Based on Two-Way Wave Equation to Image OBS Multiples: A Case Study in the South Shetland Margin (Antarctica) |
title_short |
Depth Migration Based on Two-Way Wave Equation to Image OBS Multiples: A Case Study in the South Shetland Margin (Antarctica) |
title_full |
Depth Migration Based on Two-Way Wave Equation to Image OBS Multiples: A Case Study in the South Shetland Margin (Antarctica) |
title_fullStr |
Depth Migration Based on Two-Way Wave Equation to Image OBS Multiples: A Case Study in the South Shetland Margin (Antarctica) |
title_full_unstemmed |
Depth Migration Based on Two-Way Wave Equation to Image OBS Multiples: A Case Study in the South Shetland Margin (Antarctica) |
title_sort |
depth migration based on two-way wave equation to image obs multiples: a case study in the south shetland margin (antarctica) |
publisher |
Hindawi-Wiley |
series |
Geofluids |
issn |
1468-8115 1468-8123 |
publishDate |
2020-01-01 |
description |
With the development of marine seismic exploration, the ocean bottom seismometer (OBS) as a new seismic acquisition technology has been widely concerned. Although multiple waves are frequently viewed as noises, they may carry a wealth of subsurface information and produce a broader illumination than primary waves. To perform multiple wave imaging, we propose to utilize a two-way wave equation depth wavefield extrapolation method which is rarely used in this field. A simple dipping model is imaged by using primary and multiple waves, which proves the superiority of multiple waves in imaging over the primary waves and lays a foundation for practical application. Moreover, the comparison of multiple imaging results by reverse time migration and those by our proposed method demonstrates that our proposed method requires less storage space. In this study, we apply this migration method to actual OBS data collected in the South Shetland margin (Antarctica), where gas hydrates have been well documented. Firstly, the wavefield separation method is adopted to process the OBS data, so as to produce reliable primary and multiples waves; secondly, the ray-tracing method is used to derive the velocity field; and finally, the depth wavefield extrapolation method based on the two-way wave equation is applied to image primary and multiple waves. Migration results show that multiple waves provide a broader illumination and a clearer sediment structure than primary waves, especially for the highly shallow reflections. |
url |
http://dx.doi.org/10.1155/2020/8843048 |
work_keys_str_mv |
AT shasong depthmigrationbasedontwowaywaveequationtoimageobsmultiplesacasestudyinthesouthshetlandmarginantarctica AT jiachunyou depthmigrationbasedontwowaywaveequationtoimageobsmultiplesacasestudyinthesouthshetlandmarginantarctica AT qingcao depthmigrationbasedontwowaywaveequationtoimageobsmultiplesacasestudyinthesouthshetlandmarginantarctica AT binchen depthmigrationbasedontwowaywaveequationtoimageobsmultiplesacasestudyinthesouthshetlandmarginantarctica AT xiaomengcao depthmigrationbasedontwowaywaveequationtoimageobsmultiplesacasestudyinthesouthshetlandmarginantarctica |
_version_ |
1715031975430979584 |