Fuzzy Logic Controller Based on Genetic Algorithm for Electric Drive of Crane Trolley

The paper describes a methodology based on the genetic algorithm that permits to automate the process for obtaining optimum rule bases while applying a controller based on a fuzzy logic. Using a specific structure of  a chromosome, a special mutation operation and an adequate fitness function  the p...

Full description

Bibliographic Details
Main Authors: S. E. Alavi, I. N. Petrenko
Format: Article
Language:Russian
Published: Belarusian National Technical University 2009-04-01
Series:Izvestiâ Vysših Učebnyh Zavedenij i Ènergetičeskih ob Edinennij SNG. Ènergetika
Subjects:
ru
Online Access:https://energy.bntu.by/jour/article/view/503
id doaj-fddb12bcb6eb4b3bbfa45de23c8f2c46
record_format Article
spelling doaj-fddb12bcb6eb4b3bbfa45de23c8f2c462021-07-29T08:45:34ZrusBelarusian National Technical UniversityIzvestiâ Vysših Učebnyh Zavedenij i Ènergetičeskih ob Edinennij SNG. Ènergetika1029-74482414-03412009-04-01021722496Fuzzy Logic Controller Based on Genetic Algorithm for Electric Drive of Crane TrolleyS. E. Alavi0I. N. Petrenko1Белорусский национальный технический университетБелорусский национальный технический университетThe paper describes a methodology based on the genetic algorithm that permits to automate the process for obtaining optimum rule bases while applying a controller based on a fuzzy logic. Using a specific structure of  a chromosome, a special mutation operation and an adequate fitness function  the proposed methodology makes it possible to select a fuzzy rule base, to minimize a number of rules, rationally to place input sets of fuzzy functions and corresponding arrangement of output singletons in the form of single-element sets. The paper presents an example when the methodology allows to reduce a number of rules by two fold and, consequently, calculative control procedure without any deterioration in quality control.https://energy.bntu.by/jour/article/view/503ru
collection DOAJ
language Russian
format Article
sources DOAJ
author S. E. Alavi
I. N. Petrenko
spellingShingle S. E. Alavi
I. N. Petrenko
Fuzzy Logic Controller Based on Genetic Algorithm for Electric Drive of Crane Trolley
Izvestiâ Vysših Učebnyh Zavedenij i Ènergetičeskih ob Edinennij SNG. Ènergetika
ru
author_facet S. E. Alavi
I. N. Petrenko
author_sort S. E. Alavi
title Fuzzy Logic Controller Based on Genetic Algorithm for Electric Drive of Crane Trolley
title_short Fuzzy Logic Controller Based on Genetic Algorithm for Electric Drive of Crane Trolley
title_full Fuzzy Logic Controller Based on Genetic Algorithm for Electric Drive of Crane Trolley
title_fullStr Fuzzy Logic Controller Based on Genetic Algorithm for Electric Drive of Crane Trolley
title_full_unstemmed Fuzzy Logic Controller Based on Genetic Algorithm for Electric Drive of Crane Trolley
title_sort fuzzy logic controller based on genetic algorithm for electric drive of crane trolley
publisher Belarusian National Technical University
series Izvestiâ Vysših Učebnyh Zavedenij i Ènergetičeskih ob Edinennij SNG. Ènergetika
issn 1029-7448
2414-0341
publishDate 2009-04-01
description The paper describes a methodology based on the genetic algorithm that permits to automate the process for obtaining optimum rule bases while applying a controller based on a fuzzy logic. Using a specific structure of  a chromosome, a special mutation operation and an adequate fitness function  the proposed methodology makes it possible to select a fuzzy rule base, to minimize a number of rules, rationally to place input sets of fuzzy functions and corresponding arrangement of output singletons in the form of single-element sets. The paper presents an example when the methodology allows to reduce a number of rules by two fold and, consequently, calculative control procedure without any deterioration in quality control.
topic ru
url https://energy.bntu.by/jour/article/view/503
work_keys_str_mv AT sealavi fuzzylogiccontrollerbasedongeneticalgorithmforelectricdriveofcranetrolley
AT inpetrenko fuzzylogiccontrollerbasedongeneticalgorithmforelectricdriveofcranetrolley
_version_ 1721252078817378304