On the twisted Dorfman-Courant like brackets

There are completely described all \(\mathcal{VB}_{m,n}\)-gauge-natural operators \(C\) which, like to the Dorfman-Courant bracket, send closed linear \(3\)-forms \(H\in\Gamma^{l-\rm{clos}}_E(\bigwedge^3T^*E)\) on a smooth (\(\mathcal{C}^{\infty}\)) vector bundle \(E\) into \(\mathbf{R}\)-bilinear o...

Full description

Bibliographic Details
Main Author: Włodzimierz M. Mikulski
Format: Article
Language:English
Published: AGH Univeristy of Science and Technology Press 2020-12-01
Series:Opuscula Mathematica
Subjects:
Online Access:https://www.opuscula.agh.edu.pl/vol40/6/art/opuscula_math_4039.pdf
id doaj-fdd47dccf2e0469d9b2b2f1c8c538a8d
record_format Article
spelling doaj-fdd47dccf2e0469d9b2b2f1c8c538a8d2021-02-08T18:34:28ZengAGH Univeristy of Science and Technology PressOpuscula Mathematica1232-92742020-12-01406703723https://doi.org/10.7494/OpMath.2020.40.6.7034039On the twisted Dorfman-Courant like bracketsWłodzimierz M. Mikulski0https://orcid.org/0000-0002-2905-0461Jagiellonian University, Department of Mathematics, S. Łojasiewicza 6, Cracow, PolandThere are completely described all \(\mathcal{VB}_{m,n}\)-gauge-natural operators \(C\) which, like to the Dorfman-Courant bracket, send closed linear \(3\)-forms \(H\in\Gamma^{l-\rm{clos}}_E(\bigwedge^3T^*E)\) on a smooth (\(\mathcal{C}^{\infty}\)) vector bundle \(E\) into \(\mathbf{R}\)-bilinear operators \[C_H:\Gamma^l_E(TE\oplus T^*E)\times \Gamma^l_E(TE\oplus T^*E)\to \Gamma^l_E(TE\oplus T^*E)\] transforming pairs of linear sections of \(TE\oplus T^*E\to E\) into linear sections of \(TE\oplus T^*E\to E\). Then all such \(C\) which also, like to the twisted Dorfman-Courant bracket, satisfy both some "restricted" condition and the Jacobi identity in Leibniz form are extracted.https://www.opuscula.agh.edu.pl/vol40/6/art/opuscula_math_4039.pdfnatural operatorlinear vector fieldlinear form(twisted) dorfman-courant bracketjacobi identity in leibniz form
collection DOAJ
language English
format Article
sources DOAJ
author Włodzimierz M. Mikulski
spellingShingle Włodzimierz M. Mikulski
On the twisted Dorfman-Courant like brackets
Opuscula Mathematica
natural operator
linear vector field
linear form
(twisted) dorfman-courant bracket
jacobi identity in leibniz form
author_facet Włodzimierz M. Mikulski
author_sort Włodzimierz M. Mikulski
title On the twisted Dorfman-Courant like brackets
title_short On the twisted Dorfman-Courant like brackets
title_full On the twisted Dorfman-Courant like brackets
title_fullStr On the twisted Dorfman-Courant like brackets
title_full_unstemmed On the twisted Dorfman-Courant like brackets
title_sort on the twisted dorfman-courant like brackets
publisher AGH Univeristy of Science and Technology Press
series Opuscula Mathematica
issn 1232-9274
publishDate 2020-12-01
description There are completely described all \(\mathcal{VB}_{m,n}\)-gauge-natural operators \(C\) which, like to the Dorfman-Courant bracket, send closed linear \(3\)-forms \(H\in\Gamma^{l-\rm{clos}}_E(\bigwedge^3T^*E)\) on a smooth (\(\mathcal{C}^{\infty}\)) vector bundle \(E\) into \(\mathbf{R}\)-bilinear operators \[C_H:\Gamma^l_E(TE\oplus T^*E)\times \Gamma^l_E(TE\oplus T^*E)\to \Gamma^l_E(TE\oplus T^*E)\] transforming pairs of linear sections of \(TE\oplus T^*E\to E\) into linear sections of \(TE\oplus T^*E\to E\). Then all such \(C\) which also, like to the twisted Dorfman-Courant bracket, satisfy both some "restricted" condition and the Jacobi identity in Leibniz form are extracted.
topic natural operator
linear vector field
linear form
(twisted) dorfman-courant bracket
jacobi identity in leibniz form
url https://www.opuscula.agh.edu.pl/vol40/6/art/opuscula_math_4039.pdf
work_keys_str_mv AT włodzimierzmmikulski onthetwisteddorfmancourantlikebrackets
_version_ 1724279643578564608