Summary: | Abstract Pioneered exactly 20 years ago, yeast surface display (YSD) continues to take a major role in protein engineering among the high-throughput display methodologies that have been developed to date. The classical yeast display technology relies on tethering an engineered protein to the cell wall by genetic fusion to one subunit of a dimeric yeast-mating agglutination receptor complex. This method enables an efficient genotype–phenotype linkage while exploiting the benefits of a eukaryotic expression machinery. Over the past two decades, a plethora of protein engineering efforts encompassing conventional antibody Fab and scFv fragments have been reported. In this review, we will focus on the versatility of YSD beyond conventional antibody engineering and, instead, place the focus on alternative scaffold proteins and enzymes which have successfully been tailored for purpose with regard to improving binding, activity or specificity.
|