KEEL 3.0: An Open Source Software for Multi-Stage Analysis in Data Mining

This paper introduces the 3rd major release of the KEEL Software. KEEL is an open source Java framework (GPLv3 license) that provides a number of modules to perform a wide variety of data mining tasks. It includes tools to perform data management, design of multiple kind of experiments, statistical...

Full description

Bibliographic Details
Main Authors: Isaac Triguero, Sergio González, Jose M. Moyano, Salvador García, Jesús Alcalá-Fdez, Julián Luengo, Alberto Fernández, Maria José del Jesús, Luciano Sánchez, Francisco Herrera
Format: Article
Language:English
Published: Atlantis Press 2017-01-01
Series:International Journal of Computational Intelligence Systems
Subjects:
Online Access:https://www.atlantis-press.com/article/25883592/view
id doaj-fda6f36896cf4b208469e59bb3b3354b
record_format Article
spelling doaj-fda6f36896cf4b208469e59bb3b3354b2020-11-24T21:45:05ZengAtlantis PressInternational Journal of Computational Intelligence Systems 1875-68832017-01-0110110.2991/ijcis.10.1.82KEEL 3.0: An Open Source Software for Multi-Stage Analysis in Data MiningIsaac TrigueroSergio GonzálezJose M. MoyanoSalvador GarcíaJesús Alcalá-FdezJulián LuengoAlberto FernándezMaria José del JesúsLuciano SánchezFrancisco HerreraThis paper introduces the 3rd major release of the KEEL Software. KEEL is an open source Java framework (GPLv3 license) that provides a number of modules to perform a wide variety of data mining tasks. It includes tools to perform data management, design of multiple kind of experiments, statistical analyses, etc. This framework also contains KEEL-dataset, a data repository for multiple learning tasks featuring data partitions and algorithms’ results over these problems. In this work, we describe the most recent components added to KEEL 3.0, including new modules for semi-supervised learning, multi-instance learning, imbalanced classification and subgroup discovery. In addition, a new interface in R has been incorporated to execute algorithms included in KEEL. These new features greatly improve the versatility of KEEL to deal with more modern data mining problems.https://www.atlantis-press.com/article/25883592/viewOpen SourceJavaData MiningPreprocessingEvolutionary Algorithms
collection DOAJ
language English
format Article
sources DOAJ
author Isaac Triguero
Sergio González
Jose M. Moyano
Salvador García
Jesús Alcalá-Fdez
Julián Luengo
Alberto Fernández
Maria José del Jesús
Luciano Sánchez
Francisco Herrera
spellingShingle Isaac Triguero
Sergio González
Jose M. Moyano
Salvador García
Jesús Alcalá-Fdez
Julián Luengo
Alberto Fernández
Maria José del Jesús
Luciano Sánchez
Francisco Herrera
KEEL 3.0: An Open Source Software for Multi-Stage Analysis in Data Mining
International Journal of Computational Intelligence Systems
Open Source
Java
Data Mining
Preprocessing
Evolutionary Algorithms
author_facet Isaac Triguero
Sergio González
Jose M. Moyano
Salvador García
Jesús Alcalá-Fdez
Julián Luengo
Alberto Fernández
Maria José del Jesús
Luciano Sánchez
Francisco Herrera
author_sort Isaac Triguero
title KEEL 3.0: An Open Source Software for Multi-Stage Analysis in Data Mining
title_short KEEL 3.0: An Open Source Software for Multi-Stage Analysis in Data Mining
title_full KEEL 3.0: An Open Source Software for Multi-Stage Analysis in Data Mining
title_fullStr KEEL 3.0: An Open Source Software for Multi-Stage Analysis in Data Mining
title_full_unstemmed KEEL 3.0: An Open Source Software for Multi-Stage Analysis in Data Mining
title_sort keel 3.0: an open source software for multi-stage analysis in data mining
publisher Atlantis Press
series International Journal of Computational Intelligence Systems
issn 1875-6883
publishDate 2017-01-01
description This paper introduces the 3rd major release of the KEEL Software. KEEL is an open source Java framework (GPLv3 license) that provides a number of modules to perform a wide variety of data mining tasks. It includes tools to perform data management, design of multiple kind of experiments, statistical analyses, etc. This framework also contains KEEL-dataset, a data repository for multiple learning tasks featuring data partitions and algorithms’ results over these problems. In this work, we describe the most recent components added to KEEL 3.0, including new modules for semi-supervised learning, multi-instance learning, imbalanced classification and subgroup discovery. In addition, a new interface in R has been incorporated to execute algorithms included in KEEL. These new features greatly improve the versatility of KEEL to deal with more modern data mining problems.
topic Open Source
Java
Data Mining
Preprocessing
Evolutionary Algorithms
url https://www.atlantis-press.com/article/25883592/view
work_keys_str_mv AT isaactriguero keel30anopensourcesoftwareformultistageanalysisindatamining
AT sergiogonzalez keel30anopensourcesoftwareformultistageanalysisindatamining
AT josemmoyano keel30anopensourcesoftwareformultistageanalysisindatamining
AT salvadorgarcia keel30anopensourcesoftwareformultistageanalysisindatamining
AT jesusalcalafdez keel30anopensourcesoftwareformultistageanalysisindatamining
AT julianluengo keel30anopensourcesoftwareformultistageanalysisindatamining
AT albertofernandez keel30anopensourcesoftwareformultistageanalysisindatamining
AT mariajosedeljesus keel30anopensourcesoftwareformultistageanalysisindatamining
AT lucianosanchez keel30anopensourcesoftwareformultistageanalysisindatamining
AT franciscoherrera keel30anopensourcesoftwareformultistageanalysisindatamining
_version_ 1725906818516910080