KEEL 3.0: An Open Source Software for Multi-Stage Analysis in Data Mining
This paper introduces the 3rd major release of the KEEL Software. KEEL is an open source Java framework (GPLv3 license) that provides a number of modules to perform a wide variety of data mining tasks. It includes tools to perform data management, design of multiple kind of experiments, statistical...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Atlantis Press
2017-01-01
|
Series: | International Journal of Computational Intelligence Systems |
Subjects: | |
Online Access: | https://www.atlantis-press.com/article/25883592/view |
id |
doaj-fda6f36896cf4b208469e59bb3b3354b |
---|---|
record_format |
Article |
spelling |
doaj-fda6f36896cf4b208469e59bb3b3354b2020-11-24T21:45:05ZengAtlantis PressInternational Journal of Computational Intelligence Systems 1875-68832017-01-0110110.2991/ijcis.10.1.82KEEL 3.0: An Open Source Software for Multi-Stage Analysis in Data MiningIsaac TrigueroSergio GonzálezJose M. MoyanoSalvador GarcíaJesús Alcalá-FdezJulián LuengoAlberto FernándezMaria José del JesúsLuciano SánchezFrancisco HerreraThis paper introduces the 3rd major release of the KEEL Software. KEEL is an open source Java framework (GPLv3 license) that provides a number of modules to perform a wide variety of data mining tasks. It includes tools to perform data management, design of multiple kind of experiments, statistical analyses, etc. This framework also contains KEEL-dataset, a data repository for multiple learning tasks featuring data partitions and algorithms’ results over these problems. In this work, we describe the most recent components added to KEEL 3.0, including new modules for semi-supervised learning, multi-instance learning, imbalanced classification and subgroup discovery. In addition, a new interface in R has been incorporated to execute algorithms included in KEEL. These new features greatly improve the versatility of KEEL to deal with more modern data mining problems.https://www.atlantis-press.com/article/25883592/viewOpen SourceJavaData MiningPreprocessingEvolutionary Algorithms |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Isaac Triguero Sergio González Jose M. Moyano Salvador García Jesús Alcalá-Fdez Julián Luengo Alberto Fernández Maria José del Jesús Luciano Sánchez Francisco Herrera |
spellingShingle |
Isaac Triguero Sergio González Jose M. Moyano Salvador García Jesús Alcalá-Fdez Julián Luengo Alberto Fernández Maria José del Jesús Luciano Sánchez Francisco Herrera KEEL 3.0: An Open Source Software for Multi-Stage Analysis in Data Mining International Journal of Computational Intelligence Systems Open Source Java Data Mining Preprocessing Evolutionary Algorithms |
author_facet |
Isaac Triguero Sergio González Jose M. Moyano Salvador García Jesús Alcalá-Fdez Julián Luengo Alberto Fernández Maria José del Jesús Luciano Sánchez Francisco Herrera |
author_sort |
Isaac Triguero |
title |
KEEL 3.0: An Open Source Software for Multi-Stage Analysis in Data Mining |
title_short |
KEEL 3.0: An Open Source Software for Multi-Stage Analysis in Data Mining |
title_full |
KEEL 3.0: An Open Source Software for Multi-Stage Analysis in Data Mining |
title_fullStr |
KEEL 3.0: An Open Source Software for Multi-Stage Analysis in Data Mining |
title_full_unstemmed |
KEEL 3.0: An Open Source Software for Multi-Stage Analysis in Data Mining |
title_sort |
keel 3.0: an open source software for multi-stage analysis in data mining |
publisher |
Atlantis Press |
series |
International Journal of Computational Intelligence Systems |
issn |
1875-6883 |
publishDate |
2017-01-01 |
description |
This paper introduces the 3rd major release of the KEEL Software. KEEL is an open source Java framework (GPLv3 license) that provides a number of modules to perform a wide variety of data mining tasks. It includes tools to perform data management, design of multiple kind of experiments, statistical analyses, etc. This framework also contains KEEL-dataset, a data repository for multiple learning tasks featuring data partitions and algorithms’ results over these problems. In this work, we describe the most recent components added to KEEL 3.0, including new modules for semi-supervised learning, multi-instance learning, imbalanced classification and subgroup discovery. In addition, a new interface in R has been incorporated to execute algorithms included in KEEL. These new features greatly improve the versatility of KEEL to deal with more modern data mining problems. |
topic |
Open Source Java Data Mining Preprocessing Evolutionary Algorithms |
url |
https://www.atlantis-press.com/article/25883592/view |
work_keys_str_mv |
AT isaactriguero keel30anopensourcesoftwareformultistageanalysisindatamining AT sergiogonzalez keel30anopensourcesoftwareformultistageanalysisindatamining AT josemmoyano keel30anopensourcesoftwareformultistageanalysisindatamining AT salvadorgarcia keel30anopensourcesoftwareformultistageanalysisindatamining AT jesusalcalafdez keel30anopensourcesoftwareformultistageanalysisindatamining AT julianluengo keel30anopensourcesoftwareformultistageanalysisindatamining AT albertofernandez keel30anopensourcesoftwareformultistageanalysisindatamining AT mariajosedeljesus keel30anopensourcesoftwareformultistageanalysisindatamining AT lucianosanchez keel30anopensourcesoftwareformultistageanalysisindatamining AT franciscoherrera keel30anopensourcesoftwareformultistageanalysisindatamining |
_version_ |
1725906818516910080 |