Superior GVHD-free, relapse-free survival for G-BM to G-PBSC grafts is associated with higher MDSCs content in allografting for patients with acute leukemia

Abstract Background Granulocyte colony-stimulating factor (G-CSF)-mobilized peripheral blood stem cells (G-PBSC) has largely replaced unstimulated bone marrow (un-BM) for allografting because of accelerated engraftment, but with a higher morbidity and mortality of graft-versus-host-disease (GVHD). R...

Full description

Bibliographic Details
Main Authors: Qian Fan, Hui Liu, Xinquan Liang, Ting Yang, Zhiping Fan, Fen Huang, Yiwen Ling, Xin Liao, Li Xuan, Na Xu, Xiaojun Xu, Jieyu Ye, Qifa Liu
Format: Article
Language:English
Published: BMC 2017-07-01
Series:Journal of Hematology & Oncology
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13045-017-0503-2
Description
Summary:Abstract Background Granulocyte colony-stimulating factor (G-CSF)-mobilized peripheral blood stem cells (G-PBSC) has largely replaced unstimulated bone marrow (un-BM) for allografting because of accelerated engraftment, but with a higher morbidity and mortality of graft-versus-host-disease (GVHD). Recent studies suggested that G-CSF-primed BM (G-BM) had similar engraftment but lower morbidity and mortality of GVHD comparing to G-PBSC. A prospective, randomized, multicenter study was conducted to compare G-BM with G-PBSC as the grafts in allogeneic hematopoietic stem cell transplantation (allo-HSCT) for acute leukemia in first complete remission (CR1). Methods Totally 101 adult leukemia in CR1 undergoing HLA-identical sibling transplants were randomized into G-BM or G-PBSC group. The primary study endpoint was GVHD-free/relapse-free survival (GRFS). Results Both the engraftment of neutrophil and platelet were 2 days later in G-BM than in G-PBSC group (P = 0.412, P = 0.39). G-BM group showed significantly lower II–IV acute GVHD (aGVHD) and similar III–IV aGVHD compared with G-PBSC group (12.2% vs 28.8% for II–IV, P = 0.048; 4.1% vs 9.6% for III–IV aGVHD, P = 0.267, respectively). The overall cumulative incidence of chronic GVHD (cGVHD) at 3 years were 22.3% ± 6.3% and 44.8% ± 7.6% (P = 0.026), respectively, and extensive cGHVD were 4.5% ± 3.1% and 15% ± 5.3% (P = 0.08), respectively, in G-BM and G-PBSC groups. Two groups had similar 3-year relapse, transplant-related mortality (TRM), overall survival (OS), and disease-free survival (DFS) (all P > 0.05). G-BM group showed significantly higher probability of GRFS than G-PBSC group (73.5% ± 6.3% vs 55.8% ± 6.9% at 1 year, P = 0.049; 69.0% ± 6.7% vs 49.7% ± 7.0% at 2 and 3 years, P = 0.03, respectively). Graft content analysis revealed statistically higher frequency of myeloid-derived suppressor cells (MDSCs) in the G-BM than in G-PBSC grafts (P < 0.01), and recipients received statistically higher numbers of MDSCs in G-BM than in G-PBSC group (P = 0.045). Numbers of MDSCs infused to patients were negatively correlated with the severity of aGVHD (P = 0.032, r = −0.214). Multivariate analysis showed that MDSC cell dose below the median (HR = 3.49, P < 0.001), recipient age (HR = 2.02, P = 0.039), and high risk of disease (HR = 2.14, P = 0.018) were independent risk factors for GRFS. Conclusions G-BM grafts lead a better GRFS and less GVHD associated with a higher MDSCs content compared with G-PBSC grafts.
ISSN:1756-8722