Sources of discrepancy between aerosol optical depth obtained from AERONET and in-situ aircraft profiles

Aerosol optical properties were measured by NOAA's Airborne Aerosol Observatory over Bondville, Illinois, during more than two years using a light aircraft. Measured properties included total light scattering, backscattering, and absorption, while calculated parameters included aerosol optical...

Full description

Bibliographic Details
Main Authors: A. R. Esteve, J. A. Ogren, P. J. Sheridan, E. Andrews, B. N. Holben, M. P. Utrillas
Format: Article
Language:English
Published: Copernicus Publications 2012-03-01
Series:Atmospheric Chemistry and Physics
Online Access:http://www.atmos-chem-phys.net/12/2987/2012/acp-12-2987-2012.pdf
id doaj-fd8051f32f014107a258b904dbbe1ad3
record_format Article
spelling doaj-fd8051f32f014107a258b904dbbe1ad32020-11-25T01:41:17ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242012-03-011262987300310.5194/acp-12-2987-2012Sources of discrepancy between aerosol optical depth obtained from AERONET and in-situ aircraft profilesA. R. EsteveJ. A. OgrenP. J. SheridanE. AndrewsB. N. HolbenM. P. UtrillasAerosol optical properties were measured by NOAA's Airborne Aerosol Observatory over Bondville, Illinois, during more than two years using a light aircraft. Measured properties included total light scattering, backscattering, and absorption, while calculated parameters included aerosol optical depth (AOD), Ångström exponent, single-scattering albedo, hemispheric backscatter fraction, asymmetry parameter, and submicrometer mode fraction of scattering. The in-situ aircraft measurements are compared here with AERONET measurements and retrievals of the aerosol optical properties at the same location, although it is difficult to verify the AERONET retrieval algorithm at a site that is not highly polluted. The comparison reveals discrepancies between the aerosol properties retrieved from AERONET and from in-situ aircraft measurements. These discrepancies are smaller for the AOD, while the biggest discrepancies are for the other derived aerosol properties. Possible sources of discrepancy between the AOD measured by AERONET and the one calculated from the in-situ aircraft measurements are investigated. The largest portion of the AOD discrepancy is likely due to an incorrect adjustment to ambient RH of the scattering coefficient. Another significant part (along with uncertain nephelometer truncation corrections) may come from the possibility that there might be less aerosol below the lowest flight altitude or that the aircraft inlet excludes aerosol particles larger than 5–7 μm diameter.http://www.atmos-chem-phys.net/12/2987/2012/acp-12-2987-2012.pdf
collection DOAJ
language English
format Article
sources DOAJ
author A. R. Esteve
J. A. Ogren
P. J. Sheridan
E. Andrews
B. N. Holben
M. P. Utrillas
spellingShingle A. R. Esteve
J. A. Ogren
P. J. Sheridan
E. Andrews
B. N. Holben
M. P. Utrillas
Sources of discrepancy between aerosol optical depth obtained from AERONET and in-situ aircraft profiles
Atmospheric Chemistry and Physics
author_facet A. R. Esteve
J. A. Ogren
P. J. Sheridan
E. Andrews
B. N. Holben
M. P. Utrillas
author_sort A. R. Esteve
title Sources of discrepancy between aerosol optical depth obtained from AERONET and in-situ aircraft profiles
title_short Sources of discrepancy between aerosol optical depth obtained from AERONET and in-situ aircraft profiles
title_full Sources of discrepancy between aerosol optical depth obtained from AERONET and in-situ aircraft profiles
title_fullStr Sources of discrepancy between aerosol optical depth obtained from AERONET and in-situ aircraft profiles
title_full_unstemmed Sources of discrepancy between aerosol optical depth obtained from AERONET and in-situ aircraft profiles
title_sort sources of discrepancy between aerosol optical depth obtained from aeronet and in-situ aircraft profiles
publisher Copernicus Publications
series Atmospheric Chemistry and Physics
issn 1680-7316
1680-7324
publishDate 2012-03-01
description Aerosol optical properties were measured by NOAA's Airborne Aerosol Observatory over Bondville, Illinois, during more than two years using a light aircraft. Measured properties included total light scattering, backscattering, and absorption, while calculated parameters included aerosol optical depth (AOD), Ångström exponent, single-scattering albedo, hemispheric backscatter fraction, asymmetry parameter, and submicrometer mode fraction of scattering. The in-situ aircraft measurements are compared here with AERONET measurements and retrievals of the aerosol optical properties at the same location, although it is difficult to verify the AERONET retrieval algorithm at a site that is not highly polluted. The comparison reveals discrepancies between the aerosol properties retrieved from AERONET and from in-situ aircraft measurements. These discrepancies are smaller for the AOD, while the biggest discrepancies are for the other derived aerosol properties. Possible sources of discrepancy between the AOD measured by AERONET and the one calculated from the in-situ aircraft measurements are investigated. The largest portion of the AOD discrepancy is likely due to an incorrect adjustment to ambient RH of the scattering coefficient. Another significant part (along with uncertain nephelometer truncation corrections) may come from the possibility that there might be less aerosol below the lowest flight altitude or that the aircraft inlet excludes aerosol particles larger than 5–7 μm diameter.
url http://www.atmos-chem-phys.net/12/2987/2012/acp-12-2987-2012.pdf
work_keys_str_mv AT aresteve sourcesofdiscrepancybetweenaerosolopticaldepthobtainedfromaeronetandinsituaircraftprofiles
AT jaogren sourcesofdiscrepancybetweenaerosolopticaldepthobtainedfromaeronetandinsituaircraftprofiles
AT pjsheridan sourcesofdiscrepancybetweenaerosolopticaldepthobtainedfromaeronetandinsituaircraftprofiles
AT eandrews sourcesofdiscrepancybetweenaerosolopticaldepthobtainedfromaeronetandinsituaircraftprofiles
AT bnholben sourcesofdiscrepancybetweenaerosolopticaldepthobtainedfromaeronetandinsituaircraftprofiles
AT mputrillas sourcesofdiscrepancybetweenaerosolopticaldepthobtainedfromaeronetandinsituaircraftprofiles
_version_ 1725041712600973312