Bayesian model selection favors parametric over categorical fMRI subsequent memory models in young and older adults
Subsequent memory paradigms allow to identify neural correlates of successful encoding by separating brain responses as a function of memory performance during later retrieval. In functional magnetic resonance imaging (fMRI), the paradigm typically elicits activations of medial temporal lobe, prefro...
Main Authors: | , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2021-04-01
|
Series: | NeuroImage |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S1053811921000975 |
id |
doaj-fd6b3bb8b03b43158105f765d6e99851 |
---|---|
record_format |
Article |
spelling |
doaj-fd6b3bb8b03b43158105f765d6e998512021-04-12T04:21:22ZengElsevierNeuroImage1095-95722021-04-01230117820Bayesian model selection favors parametric over categorical fMRI subsequent memory models in young and older adultsJoram Soch0Anni Richter1Hartmut Schütze2Jasmin M. Kizilirmak3Anne Assmann4Lea Knopf5Matthias Raschick6Annika Schult7Anne Maass8Gabriel Ziegler9Alan Richardson-Klavehn10Emrah Düzel11Björn H. Schott12German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany; Bernstein Center for Computational Neuroscience (BCCN), Berlin, Germany; Corresponding authors.Leibniz Institute for Neurobiology (LIN), Magdeburg, GermanyGerman Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Otto von Guericke University, Medical Faculty, Magdeburg, GermanyGerman Center for Neurodegenerative Diseases (DZNE), Göttingen, GermanyGerman Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Otto von Guericke University, Medical Faculty, Magdeburg, GermanyLeibniz Institute for Neurobiology (LIN), Magdeburg, Germany; Otto von Guericke University, Medical Faculty, Magdeburg, GermanyLeibniz Institute for Neurobiology (LIN), Magdeburg, Germany; Otto von Guericke University, Medical Faculty, Magdeburg, GermanyLeibniz Institute for Neurobiology (LIN), Magdeburg, Germany; Otto von Guericke University, Medical Faculty, Magdeburg, GermanyGerman Center for Neurodegenerative Diseases (DZNE), Magdeburg, GermanyGerman Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Otto von Guericke University, Medical Faculty, Magdeburg, GermanyIndependent scholar, Berlin, GermanyGerman Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Otto von Guericke University, Medical Faculty, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, GermanyGerman Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany; Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany; Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany; Corresponding authors.Subsequent memory paradigms allow to identify neural correlates of successful encoding by separating brain responses as a function of memory performance during later retrieval. In functional magnetic resonance imaging (fMRI), the paradigm typically elicits activations of medial temporal lobe, prefrontal and parietal cortical structures in young, healthy participants. This categorical approach is, however, limited by insufficient memory performance in older and particularly memory-impaired individuals. A parametric modulation of encoding-related activations with memory confidence could overcome this limitation. Here, we applied cross-validated Bayesian model selection (cvBMS) for first-level fMRI models to a visual subsequent memory paradigm in young (18–35 years) and older (51–80 years) adults. Nested cvBMS revealed that parametric models, especially with non-linear transformations of memory confidence ratings, outperformed categorical models in explaining the fMRI signal variance during encoding. We thereby provide a framework for improving the modeling of encoding-related activations and for applying subsequent memory paradigms to memory-impaired individuals.http://www.sciencedirect.com/science/article/pii/S1053811921000975subsequent memory effectBayesian model selectionepisodic memoryparametric fMRIaging |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Joram Soch Anni Richter Hartmut Schütze Jasmin M. Kizilirmak Anne Assmann Lea Knopf Matthias Raschick Annika Schult Anne Maass Gabriel Ziegler Alan Richardson-Klavehn Emrah Düzel Björn H. Schott |
spellingShingle |
Joram Soch Anni Richter Hartmut Schütze Jasmin M. Kizilirmak Anne Assmann Lea Knopf Matthias Raschick Annika Schult Anne Maass Gabriel Ziegler Alan Richardson-Klavehn Emrah Düzel Björn H. Schott Bayesian model selection favors parametric over categorical fMRI subsequent memory models in young and older adults NeuroImage subsequent memory effect Bayesian model selection episodic memory parametric fMRI aging |
author_facet |
Joram Soch Anni Richter Hartmut Schütze Jasmin M. Kizilirmak Anne Assmann Lea Knopf Matthias Raschick Annika Schult Anne Maass Gabriel Ziegler Alan Richardson-Klavehn Emrah Düzel Björn H. Schott |
author_sort |
Joram Soch |
title |
Bayesian model selection favors parametric over categorical fMRI subsequent memory models in young and older adults |
title_short |
Bayesian model selection favors parametric over categorical fMRI subsequent memory models in young and older adults |
title_full |
Bayesian model selection favors parametric over categorical fMRI subsequent memory models in young and older adults |
title_fullStr |
Bayesian model selection favors parametric over categorical fMRI subsequent memory models in young and older adults |
title_full_unstemmed |
Bayesian model selection favors parametric over categorical fMRI subsequent memory models in young and older adults |
title_sort |
bayesian model selection favors parametric over categorical fmri subsequent memory models in young and older adults |
publisher |
Elsevier |
series |
NeuroImage |
issn |
1095-9572 |
publishDate |
2021-04-01 |
description |
Subsequent memory paradigms allow to identify neural correlates of successful encoding by separating brain responses as a function of memory performance during later retrieval. In functional magnetic resonance imaging (fMRI), the paradigm typically elicits activations of medial temporal lobe, prefrontal and parietal cortical structures in young, healthy participants. This categorical approach is, however, limited by insufficient memory performance in older and particularly memory-impaired individuals. A parametric modulation of encoding-related activations with memory confidence could overcome this limitation. Here, we applied cross-validated Bayesian model selection (cvBMS) for first-level fMRI models to a visual subsequent memory paradigm in young (18–35 years) and older (51–80 years) adults. Nested cvBMS revealed that parametric models, especially with non-linear transformations of memory confidence ratings, outperformed categorical models in explaining the fMRI signal variance during encoding. We thereby provide a framework for improving the modeling of encoding-related activations and for applying subsequent memory paradigms to memory-impaired individuals. |
topic |
subsequent memory effect Bayesian model selection episodic memory parametric fMRI aging |
url |
http://www.sciencedirect.com/science/article/pii/S1053811921000975 |
work_keys_str_mv |
AT joramsoch bayesianmodelselectionfavorsparametricovercategoricalfmrisubsequentmemorymodelsinyoungandolderadults AT annirichter bayesianmodelselectionfavorsparametricovercategoricalfmrisubsequentmemorymodelsinyoungandolderadults AT hartmutschutze bayesianmodelselectionfavorsparametricovercategoricalfmrisubsequentmemorymodelsinyoungandolderadults AT jasminmkizilirmak bayesianmodelselectionfavorsparametricovercategoricalfmrisubsequentmemorymodelsinyoungandolderadults AT anneassmann bayesianmodelselectionfavorsparametricovercategoricalfmrisubsequentmemorymodelsinyoungandolderadults AT leaknopf bayesianmodelselectionfavorsparametricovercategoricalfmrisubsequentmemorymodelsinyoungandolderadults AT matthiasraschick bayesianmodelselectionfavorsparametricovercategoricalfmrisubsequentmemorymodelsinyoungandolderadults AT annikaschult bayesianmodelselectionfavorsparametricovercategoricalfmrisubsequentmemorymodelsinyoungandolderadults AT annemaass bayesianmodelselectionfavorsparametricovercategoricalfmrisubsequentmemorymodelsinyoungandolderadults AT gabrielziegler bayesianmodelselectionfavorsparametricovercategoricalfmrisubsequentmemorymodelsinyoungandolderadults AT alanrichardsonklavehn bayesianmodelselectionfavorsparametricovercategoricalfmrisubsequentmemorymodelsinyoungandolderadults AT emrahduzel bayesianmodelselectionfavorsparametricovercategoricalfmrisubsequentmemorymodelsinyoungandolderadults AT bjornhschott bayesianmodelselectionfavorsparametricovercategoricalfmrisubsequentmemorymodelsinyoungandolderadults |
_version_ |
1721530428859351040 |