Bayesian model selection favors parametric over categorical fMRI subsequent memory models in young and older adults

Subsequent memory paradigms allow to identify neural correlates of successful encoding by separating brain responses as a function of memory performance during later retrieval. In functional magnetic resonance imaging (fMRI), the paradigm typically elicits activations of medial temporal lobe, prefro...

Full description

Bibliographic Details
Main Authors: Joram Soch, Anni Richter, Hartmut Schütze, Jasmin M. Kizilirmak, Anne Assmann, Lea Knopf, Matthias Raschick, Annika Schult, Anne Maass, Gabriel Ziegler, Alan Richardson-Klavehn, Emrah Düzel, Björn H. Schott
Format: Article
Language:English
Published: Elsevier 2021-04-01
Series:NeuroImage
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1053811921000975
id doaj-fd6b3bb8b03b43158105f765d6e99851
record_format Article
spelling doaj-fd6b3bb8b03b43158105f765d6e998512021-04-12T04:21:22ZengElsevierNeuroImage1095-95722021-04-01230117820Bayesian model selection favors parametric over categorical fMRI subsequent memory models in young and older adultsJoram Soch0Anni Richter1Hartmut Schütze2Jasmin M. Kizilirmak3Anne Assmann4Lea Knopf5Matthias Raschick6Annika Schult7Anne Maass8Gabriel Ziegler9Alan Richardson-Klavehn10Emrah Düzel11Björn H. Schott12German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany; Bernstein Center for Computational Neuroscience (BCCN), Berlin, Germany; Corresponding authors.Leibniz Institute for Neurobiology (LIN), Magdeburg, GermanyGerman Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Otto von Guericke University, Medical Faculty, Magdeburg, GermanyGerman Center for Neurodegenerative Diseases (DZNE), Göttingen, GermanyGerman Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Otto von Guericke University, Medical Faculty, Magdeburg, GermanyLeibniz Institute for Neurobiology (LIN), Magdeburg, Germany; Otto von Guericke University, Medical Faculty, Magdeburg, GermanyLeibniz Institute for Neurobiology (LIN), Magdeburg, Germany; Otto von Guericke University, Medical Faculty, Magdeburg, GermanyLeibniz Institute for Neurobiology (LIN), Magdeburg, Germany; Otto von Guericke University, Medical Faculty, Magdeburg, GermanyGerman Center for Neurodegenerative Diseases (DZNE), Magdeburg, GermanyGerman Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Otto von Guericke University, Medical Faculty, Magdeburg, GermanyIndependent scholar, Berlin, GermanyGerman Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Otto von Guericke University, Medical Faculty, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, GermanyGerman Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany; Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany; Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany; Corresponding authors.Subsequent memory paradigms allow to identify neural correlates of successful encoding by separating brain responses as a function of memory performance during later retrieval. In functional magnetic resonance imaging (fMRI), the paradigm typically elicits activations of medial temporal lobe, prefrontal and parietal cortical structures in young, healthy participants. This categorical approach is, however, limited by insufficient memory performance in older and particularly memory-impaired individuals. A parametric modulation of encoding-related activations with memory confidence could overcome this limitation. Here, we applied cross-validated Bayesian model selection (cvBMS) for first-level fMRI models to a visual subsequent memory paradigm in young (18–35 years) and older (51–80 years) adults. Nested cvBMS revealed that parametric models, especially with non-linear transformations of memory confidence ratings, outperformed categorical models in explaining the fMRI signal variance during encoding. We thereby provide a framework for improving the modeling of encoding-related activations and for applying subsequent memory paradigms to memory-impaired individuals.http://www.sciencedirect.com/science/article/pii/S1053811921000975subsequent memory effectBayesian model selectionepisodic memoryparametric fMRIaging
collection DOAJ
language English
format Article
sources DOAJ
author Joram Soch
Anni Richter
Hartmut Schütze
Jasmin M. Kizilirmak
Anne Assmann
Lea Knopf
Matthias Raschick
Annika Schult
Anne Maass
Gabriel Ziegler
Alan Richardson-Klavehn
Emrah Düzel
Björn H. Schott
spellingShingle Joram Soch
Anni Richter
Hartmut Schütze
Jasmin M. Kizilirmak
Anne Assmann
Lea Knopf
Matthias Raschick
Annika Schult
Anne Maass
Gabriel Ziegler
Alan Richardson-Klavehn
Emrah Düzel
Björn H. Schott
Bayesian model selection favors parametric over categorical fMRI subsequent memory models in young and older adults
NeuroImage
subsequent memory effect
Bayesian model selection
episodic memory
parametric fMRI
aging
author_facet Joram Soch
Anni Richter
Hartmut Schütze
Jasmin M. Kizilirmak
Anne Assmann
Lea Knopf
Matthias Raschick
Annika Schult
Anne Maass
Gabriel Ziegler
Alan Richardson-Klavehn
Emrah Düzel
Björn H. Schott
author_sort Joram Soch
title Bayesian model selection favors parametric over categorical fMRI subsequent memory models in young and older adults
title_short Bayesian model selection favors parametric over categorical fMRI subsequent memory models in young and older adults
title_full Bayesian model selection favors parametric over categorical fMRI subsequent memory models in young and older adults
title_fullStr Bayesian model selection favors parametric over categorical fMRI subsequent memory models in young and older adults
title_full_unstemmed Bayesian model selection favors parametric over categorical fMRI subsequent memory models in young and older adults
title_sort bayesian model selection favors parametric over categorical fmri subsequent memory models in young and older adults
publisher Elsevier
series NeuroImage
issn 1095-9572
publishDate 2021-04-01
description Subsequent memory paradigms allow to identify neural correlates of successful encoding by separating brain responses as a function of memory performance during later retrieval. In functional magnetic resonance imaging (fMRI), the paradigm typically elicits activations of medial temporal lobe, prefrontal and parietal cortical structures in young, healthy participants. This categorical approach is, however, limited by insufficient memory performance in older and particularly memory-impaired individuals. A parametric modulation of encoding-related activations with memory confidence could overcome this limitation. Here, we applied cross-validated Bayesian model selection (cvBMS) for first-level fMRI models to a visual subsequent memory paradigm in young (18–35 years) and older (51–80 years) adults. Nested cvBMS revealed that parametric models, especially with non-linear transformations of memory confidence ratings, outperformed categorical models in explaining the fMRI signal variance during encoding. We thereby provide a framework for improving the modeling of encoding-related activations and for applying subsequent memory paradigms to memory-impaired individuals.
topic subsequent memory effect
Bayesian model selection
episodic memory
parametric fMRI
aging
url http://www.sciencedirect.com/science/article/pii/S1053811921000975
work_keys_str_mv AT joramsoch bayesianmodelselectionfavorsparametricovercategoricalfmrisubsequentmemorymodelsinyoungandolderadults
AT annirichter bayesianmodelselectionfavorsparametricovercategoricalfmrisubsequentmemorymodelsinyoungandolderadults
AT hartmutschutze bayesianmodelselectionfavorsparametricovercategoricalfmrisubsequentmemorymodelsinyoungandolderadults
AT jasminmkizilirmak bayesianmodelselectionfavorsparametricovercategoricalfmrisubsequentmemorymodelsinyoungandolderadults
AT anneassmann bayesianmodelselectionfavorsparametricovercategoricalfmrisubsequentmemorymodelsinyoungandolderadults
AT leaknopf bayesianmodelselectionfavorsparametricovercategoricalfmrisubsequentmemorymodelsinyoungandolderadults
AT matthiasraschick bayesianmodelselectionfavorsparametricovercategoricalfmrisubsequentmemorymodelsinyoungandolderadults
AT annikaschult bayesianmodelselectionfavorsparametricovercategoricalfmrisubsequentmemorymodelsinyoungandolderadults
AT annemaass bayesianmodelselectionfavorsparametricovercategoricalfmrisubsequentmemorymodelsinyoungandolderadults
AT gabrielziegler bayesianmodelselectionfavorsparametricovercategoricalfmrisubsequentmemorymodelsinyoungandolderadults
AT alanrichardsonklavehn bayesianmodelselectionfavorsparametricovercategoricalfmrisubsequentmemorymodelsinyoungandolderadults
AT emrahduzel bayesianmodelselectionfavorsparametricovercategoricalfmrisubsequentmemorymodelsinyoungandolderadults
AT bjornhschott bayesianmodelselectionfavorsparametricovercategoricalfmrisubsequentmemorymodelsinyoungandolderadults
_version_ 1721530428859351040